Księgarnia naukowa
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Free access during pandemic


Thomas' Calculus: Early Transcendentals in SI Units

Thomas' Calculus: Early Transcendentals in SI Units

Authors
Publisher Pearson Education
Year 01/02/2019
Edition 14
Pages 1232
Version paperback
Readership level College/higher education
Language English
ISBN 9781292253114
Categories Calculus & mathematical analysis
Replaces 9781292163444
$82.14 (with VAT)
317.92 PLN / €69.31 / £62.99
Qty:
Delivery to United States

check shipping prices
Product to order
Delivery 3-4 weeks
Add to bookshelf

Book description

For three-semester or four-quarter courses in Calculus for students majoring in mathematics, engineering, or science


Clarity and precision

Thomas' Calculus: Early Transcendentals helps students reach the level of mathematical proficiency and maturity you require, but with support for students who need it through its balance of clear and intuitive explanations, current applications, and generalized concepts. In the 14th SI Edition, new co-author Christopher Heil (Georgia Institute of Technology) partners with author Joel Hass to preserve what is best about Thomas' time-tested text while reconsidering every word and every piece of art with today's students in mind. The result is a text that goes beyond memorizing formulas and routine procedures to help  students generalize key concepts and develop deeper understanding.



Also available with Pearson MyLab Math

Pearson MyLab™ Math is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. A full suite of Interactive Figures have been added to the accompanying Pearson MyLab Math course to further support teaching and learning. Enhanced Sample Assignments include just-in-time prerequisite review, help keep skills fresh with distributed practice of key concepts, and provide opportunities to work exercises without learning aids to help students develop confidence in their ability to solve problems independently.

Thomas' Calculus: Early Transcendentals in SI Units

Table of contents

1. Functions

1.1 Functions and Their Graphs

1.2 Combining Functions; Shifting and Scaling Graphs

1.3 Trigonometric Functions

1.4 Exponential Functions

1.5 Inverse Functions and Logarithms

2. Limits and Continuity

2.1 Rates of Change and Tangent Lines to Curves

2.2 Limit of a Function and Limit Laws

2.3 The Precise Definition of a Limit

2.4 One-Sided Limits

2.5 Limits Involving Infinity; Asymptotes of Graphs

2.6 Continuity

 

3. Derivatives

3.1 Tangent Lines and the Derivative at a Point

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 The Derivative as a Rate of Change

3.5 Derivatives of Trigonometric Functions

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Derivatives of Inverse Functions and Logarithms

3.9 Inverse Trigonometric Functions

3.10 Related Rates

3.11 Linearization and Differentials

 

4. Applications of Derivatives

4.1 Extreme Values of Functions on Closed Intervals

4.2 The Mean Value Theorem

4.3 Monotonic Functions and the First Derivative Test

4.4 Concavity and Curve Sketching

4.5 Indeterminate Forms and L’Hôpital’s Rule

4.6 Applied Optimization

4.7 Newton’s Method

4.8 Antiderivatives

 

5. Integrals

5.1 Area and Estimating with Finite Sums

5.2 Sigma Notation and Limits of Finite Sums

5.3 The Definite Integral

5.4 The Fundamental Theorem of Calculus

5.5 Indefinite Integrals and the Substitution Method

5.6 Definite Integral Substitutions and the Area Between Curves

 

6. Applications of Definite Integrals

6.1 Volumes Using Cross-Sections

6.2 Volumes Using Cylindrical Shells

6.3 Arc Length

6.4 Areas of Surfaces of Revolution

6.5 Work and Fluid Forces

6.6 Moments and Centers of Mass

 

7. Integrals and Transcendental Functions

7.1 The Logarithm Defined as an Integral

7.2 Exponential Change and Separable Differential Equations

7.3 Hyperbolic Functions

7.4 Relative Rates of Growth

 

8. Techniques of Integration

8.1 Using Basic Integration Formulas

8.2 Integration by Parts

8.3 Trigonometric Integrals

8.4 Trigonometric Substitutions

8.5 Integration of Rational Functions by Partial Fractions

8.6 Integral Ta

We also recommend books

Strony www Białystok Warszawa
801 777 223