Authors | |

Publisher | Pearson Education |

Year | 01/05/2019 |

Edition | 14 |

Pages | 1216 |

Version | paperback |

Readership level | College/higher education |

Language | English |

ISBN | 9781292253220 |

Categories | Calculus & mathematical analysis |

Replaces | 9781292089799 |

$86.71 (with VAT)

327.00 PLN / €73.46 / £66.91

Delivery to United States

check shipping prices

Product available

Delivery 2 days

*For three-semester or four-quarter courses in Calculus for students majoring in mathematics, engineering, or science*

**Clarity and precision**

** Thomas' Calculus** helps students reach the level of mathematical proficiency and maturity you require, but with support for students who need it through its balance of clear and intuitive explanations, current applications, and generalized concepts. In the

**MyLab ^{TM} Math not included. **Students, if MyLab is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MyLab should only be purchased when required by an instructor. Instructors, contact your Pearson rep for more information.

**Reach every student by pairing this text with MyLab Math**

MyLab™ is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student.

Thomas' Calculus in SI Units

1. Functions

1.1 Functions and Their Graphs

1.2 Combining Functions; Shifting and Scaling Graphs

1.3 Trigonometric Functions

1.4 Exponential Functions

2. Limits and Continuity

2.1 Rates of Change and Tangent Lines to Curves

2.2 Limit of a Function and Limit Laws

2.3 The Precise Definition of a Limit

2.4 One-Sided Limits

2.5 Limits Involving Infinity; Asymptotes of Graphs

2.6 Continuity

3. Derivatives

3.1 Tangent Lines and the Derivative at a Point

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 The Derivative as a Rate of Change

3.5 Derivatives of Trigonometric Functions

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Related Rates

3.9 Linearization and Differentials

4. Applications of Derivatives

4.1 Extreme Values of Functions on Closed Intervals

4.2 The Mean Value Theorem

4.3 Monotonic Functions and the First Derivative Test

4.4 Concavity and Curve Sketching

4.5 Applied Optimization

4.6 Newton’s Method

4.7 Antiderivatives

5. Integrals

5.1 Area and Estimating with Finite Sums

5.2 Sigma Notation and Limits of Finite Sums

5.3 The Definite Integral

5.4 The Fundamental Theorem of Calculus

5.5 Indefinite Integrals and the Substitution Method

5.6 Definite Integral Substitutions and the Area Between Curves

6. Applications of Definite Integrals

6.1 Volumes Using Cross-Sections

6.2 Volumes Using Cylindrical Shells

6.3 Arc Length

6.4 Areas of Surfaces of Revolution

6.5 Work and Fluid Forces

6.6 Moments and Centers of Mass

7. Transcendental Functions

7.1 Inverse Functions and Their Derivatives

7.2 Natural Logarithms

7.3 Exponential Functions

7.4 Exponential Change and Separable Differential Equations

7.5 Indeterimnate Forms and L’Hôpital’s Rule

7.6 Inverse Trigonometric Functions

7.7 Hyperbolic Functions

7.8 Relative Rates of Growth

8. Techniques of Integration

8.1 Using Basic Integration Formulas

8.2 Integration by Parts

8.3 Trigonometric Integrals

8.4 Trigonometric Substitutions

8.5 Integration of Rational Functions by Partial Fractions

8.6 Integral Tables and Computer Algebra Systems

8.7