Księgarnia naukowa
English Polski
On-line access


0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Free access during pandemic

Acoustics, 1

Acoustics, 1

Publisher Springer Nature Customer Service Center GmbH
Year 01/01/2019
Edition First
Pages 768
Version hardback
Readership level Professional and scholarly
Language English
ISBN 9783030112134
Categories Wave mechanics (vibration & acoustics), Geographical information systems (GIS) & remote sensing, Dynamics & vibration, Building construction & materials, Pollution control, Acoustic & sound engineering
Delivery to United States

check shipping prices
Ask about the product
Add to bookshelf

Book description

This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics.
Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.

Acoustics, 1

Table of contents


List of Symbols


Chapter 1 The Wave Theory of Sound

1-1 A Little History

1-2 The Conservation of Mass

1-3 Euler's Equation of Motion for a Fluid

1-4 Pressure-Density Relations

1-5 Equations of Linear Acoustics

1-6 The Wave Equation

1-7 Plane Traveling Waves

1-8 Waves of Constant Frequency

1-9 Speed of Sound and Ambient Density

1-10 Adiabatic versus Isothermal Sound Speeds

1-11 Acoustic Energy, Intensity, and Source Power

1-12 Spherical Waves



Chapter 2 Quantitative Measures of Sound

2-1 Frequency Content of Sounds

2-2 Proportional Frequency Bands

2-3 Levels and the Decibel

2-4 Frequency Weighting and Filters

2-5 Combining of Levels

2-6 Mutually Incoherent Sound Sources

2-7 Fourier Series and Long-Duration Sounds

2-8 Transient Waveforms

2-9 Transfer Functions

2-10 Stationary Ergodic Processes

2-11 Bias and Variance



Chapter 3 Reflection, Transmission, and Excitation of Plane Waves

3-1 Boundary Conditions at Impenetrable Surfaces

3-2 Plane-Wave Reflection at a Flat Rigid Surface

3-3 Specific Acoustic Impedance

3-4 Radiation of Sound by a Vibrating Piston within a Tube

3-5 Sound Radiation by Traveling Flexural Waves

3-6 Reflection and Transmission at an Interlace between Two Fluids

3-7 Multilayer Transmission and Reflection

3-8 Transmission through Thin Solid Slabs, Plates, and Blankets



Chapter 4 Radiation from Vibrating Bodies

4-1 Radially Oscillating Sphere

4-2 Transversely Oscillating Rigid Sphere

4-3 Monopoles and Green's Functions

4-4 Dipoles and Quadrupoles

4-5 Uniqueness of Solutions of Acoustic Boundary-Value Problems

4-6 The Kirchhoff-Helmholtz Integral Theorem

4-7 Sound Radiation from Small Vibrating Bodies

4-8 Radiation from a Circular Disk

4-9 Reciprocity in Acoustics

4-10 Transducers and Reciprocity



Chapter 5 Radiation from Sources Near and on Solid Surfaces

5-1 Sources near Plane Rigid Boundaries

5-2 Sources Mounted on Walls: The Rayleigh Integral; Fresnel-Kirchhoff Theory of Diffraction by an Aperture

5-3 Low-Frequency Radiation from Sources Mounted on Walls

5-4 Radiation Impeda

We also recommend books

Strony www Białystok Warszawa
801 777 223