Księgarnia naukowa
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Free access during pandemic


Nanotechnology for Microfluidics

Nanotechnology for Microfluidics

Authors
Publisher Wiley-VCH Verlag GmbH
Year 19/02/2020
Pages 448
Version hardback
Readership level Professional and scholarly
ISBN 9783527345335
Categories Nanotechnology
$164.82 (with VAT)
620.00 PLN / €138.76 / £123.33
Qty:
Delivery to United States

check shipping prices
Product available
Delivery 2 days
Add to bookshelf

Book description

The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.

Nanotechnology for Microfluidics

Table of contents

Preface xiii


1 Micro/Nanostructured Materials from Droplet Microfluidics 1
Xin Zhao, Jieshou Li, and Yuanjin Zhao


1.1 Introduction 1


1.2 MMs from Droplet Microfluidics 4


1.2.1 Simple Spherical Microparticles (MPs) 4


1.2.2 Janus MPs 7


1.2.3 Core-Shell MPs 7


1.2.4 Porous MPs 9


1.2.5 Other MMs 10


1.3 NMs from Droplet Microfluidics 13


1.3.1 Inorganic NMs 13


1.3.2 Organic NMs 16


1.3.3 Other NMs 16


1.4 Applications of the Droplet-Derived Materials 18


1.4.1 Drug Delivery 18


1.4.2 Cell Microencapsulation 23


1.4.3 Tissue Engineering 25


1.4.4 Biosensors 29


1.4.5 Barcodes 32


1.5 Conclusion and Perspectives 35


References 36


2 Digital Microfluidics for Bioanalysis 47
Qingyu Ruan, Jingjing Guo, Yang Wang, Fenxiang Zou, Xiaoye Lin, Wei Wang, and Chaoyong Yang


2.1 Introduction 47


2.2 Theoretical Background 48


2.2.1 Theoretical Background 48


2.2.1.1 Thermodynamic Approach 49


2.2.1.2 Energy Minimization Approach 50


2.2.1.3 Electromechanical Approach 52


2.2.2 Contact Angle Saturation 53


2.2.3 Basic Microfluidic Functions by EWOD Actuation 53


2.3 Device Fabrication 55


2.4 Digital Microfluidics Integrated with Other Devices 56


2.4.1 Sample Processing Systems Integrated with Digital Microfluidics 56


2.4.1.1 World-to-chip Interface 56


2.4.1.2 Magnet Separation 58


2.4.1.3 Heater Module 59


2.4.2 Detection Systems Integrated with Digital Microfluidics 59


2.4.2.1 Optical Methods 59


2.4.2.2 Electrochemical Methods 61


2.4.2.3 Other Detection Methods 62


2.5 Biological Applications on DMF 63


2.5.1 Enzyme Assays 63


2.5.2 Immunoassay 63


2.5.3 DNA-Based Applications 66


2.5.4 Cell-Based Applications 68


2.6 Conclusions and Perspectives 72


References 73


3 Nanotechnology and Microfluidics for Biosensing and Biophysical Property Assessment: Implications for Next-Generation in Vitro Diagnostics 83
Zida Li and Ho Cheung Shum


3.1 Introduction 83


3.1.1 Nanotechnology and Microfluidics 84


3.2 Fundamentals of Nanotechnology and Microfluidics 86


3.2.1 Nanotechnology 86


3.2.2 Microfluidics 87


3.3 Biomolecule Sensing 88


3.3.1 Techniques Based on Optical Readout 89


3.3.1.1 Localized Surface Plasmon Resonance 89


3.3.1.2 Surface-Enhanced Raman Spectroscopy 90


3.3.1.3 Nanoengineered Fluorescence Probes 91


3.3.1.4 Nanotopography-Based Cell Capturing 93


3.3.2 Techniques Based on Electrical Readouts 93


3.3.2.1 Electrochemical Reactions 93


3.3.2.2 Nanotransistor-Based Assays 94


3.4 Biophysical Property Sensing 95


3.4.1 Cell Contractility Measurement 96


3.4.2 Cell Deformability 98


3.4.3 Fluid Rheology 99


3.4.4 Electrophysiology 99


3.5 Concluding Remarks 100


Acknowledgments 100


References 101


4 Microfluidic Tools for the Synthesis of Bespoke Quantum Dots 109
Shangkun Li, Jeff C. Hsiao, Philip D. Howes, and Andrew J. deMello


4.1 Introduction 109


4.1.1 Microfluidics in the Chemical and Biological Sciences 109


4.1.2 Compound Semiconductor Nanoparticles 109


4.1.3 Microfluidic Tools for Nanoparticle Synthesis 112


4.2 Design Considerations 114


4.2.1 Continuous-Flow Microfluidics 115


4.2.2 Segmented-Flow Microfluidics 115


4.3 Continuous-Flow Microfluidic Synthesis of Quantum Dots 118


4.3.1 Homogenous Core-Type Quantum Dots in Continuous Flow 118


4.3.1.1 Cadmium Sulfide (CdS) 118


4.3.1.2 Cadmium Selenide (CdSe) 119


4.3.2 Heterogenous Core/Shell Quantum Dots in Continuous Flow 121


4.3.2.1 Zinc Selenide/Zinc Sulfide (ZnSe/ZnS) 121


4.3.2.2 Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) and Cadmium Telluride/Zinc Sulfide (CdTe/ZnS) 121


4.3.2.3 Copper Indium Sulfide/Zinc Sulfide (CuInS2/ZnS) 123


4.3.2.4 Indium Phosphide/Zinc Sulfide (InP/ZnS) 125


4.3.3 Heterogenous Core/Multishell Quantum Dots in Continuous Flow 125


4.3.3.1 Cadmium Selenide/Cadmium Sulfide/Zinc Sulfide (CdSe/CdS/ZnS) 126


4.3.4 Summary of QD Classes 128


4.4 Segmented-Flow Microfluidic Synthesis of Quantum Dots 128


4.4.1 Homogenous Structure Quantum Dots in Segmented Flow 129


4.4.1.1 Cadmium Sulfide (CdS) 129


4.4.1.2 Cadmium Selenide (CdSe) 130


4.4.1.3 Lead Sulfide (PbS) and Lead Selenide (PbSe) 131


4.4.1.4 Perovskite QDs 132


4.4.2 Heterogenous Core/Shell Quantum Dots in Segmented Flow 134


4.4.2.1 Copper Indium Sulfide/Zinc Sulfide (CuInS2/ZnS) 134


4.4.3 Multistep Synthesis of QDs in Segmented Flow 135


4.4.4 Nucleation and Growth Studies of Quantum Dots 138


4.5 Conclusions and Outlook 140


References 141


5 Microfluidics for Immuno-oncology 149
Chao Ma, Jacob Harris, Renee-Tyler T. Morales, and Weiqiang Chen


5.1 Introduction 149


5.2 Microfluidics for Single Immune Cell Analysis 153


5.2.1 Single Immune Cells 153


5.2.1.1 T Cells 153


5.2.1.2 M s 156


5.2.1.3 DCs 157


5.2.1.4 B Cells 158


5.2.2 Microfluidics for Immune and Tumor Cell Interaction Analysis 159


5.2.2.1 T-cell Priming and Activation by APCs 159


5.2.2.2 Killing of Cancer Cells by Immune Effector Cells 162


5.2.2.3 Interaction Between Cancer Cells and M s 163


5.3 Microfluidics for Tumor Immune Microenvironment Analysis 163


5.3.1 Modeling the Tumor Immune Microenvironment 163


5.3.1.1 T-cell Trafficking and Migration 164


5.3.1.2 T-cell Priming and Activation by APCs 165


5.3.1.3 APC Processing and Presentation of TAAs 165


5.3.1.4 Interaction Between Cancer Cells and M s 166


5.3.2 On-chip Testing of Tumor Immunotherapy 166


5.3.2.1 TCR T Cells 167


5.3.2.2 Immune Checkpoint Blockade 167


5.4 Concluding Remarks and Future Perspectives 170


Acknowledgments 171


References 172


6 Paper and Paper Hybrid Microfluidic Devices for Point-of-care Detection of Infectious Diseases 177
Hamed Tavakoli, Wan Zhou, Lei Ma, Qunqun Guo, and XiuJun Li


6.1 Introduction 177


6.2 Fabrication of Paper-Based Microfluidic Devices 179


6.2.1 Fabrication Techniques for Paper-Based Microfluidic Platforms 179


6.2.1.1 Physical Blocking of Pores in Paper 180


6.2.1.2 Physical Deposition of Reagents on Paper Surface 181


6.2.1.3 Chemical Modification 182


6.2.1.4 Other Techniques 183


6.2.2 Fabrication of Paper Hybrid Microfluidic Devices 183


6.3 Application of Paper and Paper Hybrid Microfluidic Devices for Infectious Disease Diagnosis 184


6.3.1 Colorimetric Detection 185


6.3.2 Fluorescence Detection 187


6.3.3 Electrochemical Detection 191


6.4 Integration of Nanosensors on Paper and Paper Hybrid Microfluidic Devices for Infectious Disease Diagnosis 193


6.4.1 Carbon-Based Nanosensors 195


6.4.2 Gold-Based Nanosensors 198


6.4.3 Other Nanosensors 200


6.5 Summary and Outlook 202


Acknowledgment 202


References 203


7 Biological Diagnosis Based on Microfluidics and Nanotechnology 211
Navid Kashaninejad, Mohammad Yaghoobi, Mohammad Pourhassan-Moghaddam, Sajad R. Bazaz, Dayong Jin, and Majid E.Warkiani


7.1 Introduction 211


7.2 Quantum Dot-Based Microfluidic Biosensor for Biological Diagnosis 212


7.2.1 Qdot-Based Disease Diagnosis Using Microfluidics 213


7.3 Upconversion Nanoparticles 219


7.4 Fluorescent Biodots 221


7.5 Digital Microfluidic Systems for Diagnosis Detection 223


7.6 Paper-Based Diagnostics 226


7.6.1 Structure and Chemistry of Paper 226


7.6.2 Applications of Paper-Based Devices in the Diagnostics 227


7.6.2.1 Labeled Biosensing 228


7.6.2.2 Label-Free Biosensing 228


7.6.3 Integration of Nanoparticles with Paper-Based Microfluidic Devices 228


7.6.3.1 Gold Nanomaterials 228


7.6.3.2 Fluorescent Nanomaterials 229


7.7 Conclusion and Future Perspective 231


Conflicts of Interest 231


Acknowledgment 231


References 232


8 Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses 239
Dong Wang, Ho N. Chan, Zeyu Liu, Sean Micheal, Lijun Li, Dorsa B. Baniani, Ming J. A. Tan, Lu Huang, Jiantao Wang, and Hongkai Wu


8.1 Introduction 239


8.2 Cell 240


8.2.1 Blood Cell Counting 240


8.2.2 Characterization of CD64 Expression 241


8.2.3 Enumeration of CD4+ T Lymphocytes for HIV Monitoring 242


8.2.4 Circulating Tumor Cell (CTC) Isolation and Analysis 243


8.3 Nucleic Acid 245


8.3.1 Nonisothermal Amplification 245


8.3.2 Isothermal Amplification 246


8.4 Protein 253


8.4.1 Novel Chemistry and Nanomaterials 253


8.4.2 3D-Printed Microfluidic Devices 256


8.4.3 Digital and Droplet Microfluidics 259


8.5 Metabolites and Small Molecules 262


8.6 Conclusion and Outlook 271


Acknowledgments 271


References 271


9 Microfluidics in Microbiome and Cancer Research 281
Barath Udayasuryan, Daniel J. Slade, and Scott S. Verbridge


9.1 Introduction 281


9.2 What is theMicrobiome? 282


9.2.1 Composition and Biogeography 282


9.2.2 The Microbiome and Cancer 285


9.2.3 Helicobacter pylori and Gastric Cancer 286


9.2.4 Fusobacterium nucleatum and CRC 287


9.2.5 Bacterial Invasion 288


9.3 Studying the Microbiome 289


9.3.1 2D Models 291


9.3.2 3D Models 291


9.3.3 Organ-on-a-Chip and the Application of Microfluidics 295


9.4 Microfluidic Intestine Chip Models 297


9.4.1 Gut-on-a-Chip Model 297


9.4.2 Co-culture of the Gut-on-a-Chip with Microbiota 298


9.4.3 The HuMiX Model 299


9.4.4 Anaerobic Human Intestine Chip 301


9.4.5 Anoxic-Oxic Interface (AOI)-on-a-Chip 303


9.4.6 Future Directions 304


9.5 Concluding Remarks and Future Perspectives 306


Acknowledgments 308


References 308


10 Microfluidic Synthesis of Functional Nanoparticles 319
Ziwei Han and Xingyu Jiang


10.1 Introduction 319


10.2 Fabrication of Microfluidic Chips 320


10.2.1 Fabrication of Microchannels: Photolithography 321


10.2.2 Fabrication of PDMS-Based Microfluidic Chips 321


10.2.3 Pressure Tolerance 321


10.3 Microfluidic Synthesis of Functional Nanoparticles 323


10.3.1 Mixing Strategy 323


10.3.1.1 Hydrodynamic Focusing 323


10.3.1.2 Microstructure to Enhance Mixing Efficiency 324


10.3.2 Bionanoparticle Interactions 325


10.3.2.1 Well-Controlled Size and Monodispersity 325


10.3.2.2 Surface Modification 326


10.3.2.3 Mechanical Properties 327


10.3.2.4 Controllable Multilayer Structure 328


10.4 Microfluidic Assembly of Nanoparticles for Biological and Medical Applications 329


10.4.1 Drug Delivery 330


10.4.1.1 pH-Sensitive Drug Release 330


10.4.1.2 Hydrophilic Drug Delivery 331


10.4.1.3 Photoresponsive Drug Release 332


10.4.1.4 Gene Delivery 332


10.4.2 Imaging 332


10.4.2.1 MRI 332


10.4.2.2 Fluorescence Imaging 333


10.4.2.3 Ultrasonic Imaging 334


10.4.3 Biosensing 334


10.4.4 Theranostics 336


10.5 Prospects of Microfluidic Synthesis 337


Acknowledgment 338


References 339


11 Design Considerations for Muscle-Actuated Biohybrid Devices 347
Yoshitake Akiyama, Sung-Jin Park, and Shuichi Takayama


11.1 Introduction 347


11.2 Characteristics and Applicability of Muscles for Biohybrid Devices 348


11.2.1 Heart Muscle (Cardiomyocytes) 348


11.2.2 Skeletal Muscle Cells 350


11.2.3 Smooth Muscle Cells 351


11.2.4 Nonmammalian Muscle Cells 352


11.3 Arrangement of Muscle Cells and Tissues on Biohybrid Devices 352


11.3.1 Interfaces Between Muscle Cells and Material 353


11.3.1.1 Interfaces in 2D Culture 353


11.3.1.2 Interfaces in 3D Culture 354


11.3.2 Mechanical Pairing of Muscles 355


11.3.3 Interface Between Medium and Air 356


11.4 Oxygen Supply in Muscle Tissue Engineering 356


11.4.1 Equation and Conditions for Numerical Simulations 357


11.4.2 Oxygen Distribution under Static Culture 357


11.4.3 Oxygen Distribution in Microfluidic Devices 359


11.4.4 Other Approaches to Improve Oxygen Supply 360


11.5 Contractile Force of Muscle Bundles and Stimulations 361


11.5.1 Tissue-Engineered Muscle Consisting of C2C12 Cells 361


11.5.2 Tissue-Engineered Muscle Consisting of Primary Myoblasts 364


11.6 Control of Muscle Contractions 366


11.6.1 Electrical Stimulation 366


11.6.2 Optical Stimulation 367


11.6.3 Others 368


11.7 Conclusions and Future Challenges 368


11.7.1 Completely 3D-Printed Biohybrid Devices 368


11.7.2 Integration with Other Tissues 369


11.7.3 Long-Term Maintenance and Self-healing 369


11.7.4 Exploring Applications 370


Acknowledgments 370


References 370


12 Micro- and Nanoscale Biointerrogation and Modulation of Neural Tissue - From Fundamental to Clinical and Military Applications 383
Jordan Moore, Diego Alzate-Correa, Devleena Dasgupta, William Lawrence, Daniel Dodd, Craig Mathews, Ian Valerio, Cameron Rink, Natalia Higuita-Castro, and Daniel Gallego-Perez


12.1 Introduction 383


12.2 General Principles 385


12.2.1 Physics of Miniaturized Systems 385


12.2.2 Material Properties 385


12.3 Areas of Study 386


12.3.1 Neurodevelopment 386


12.3.2 Neuro-oncology 388


12.3.3 Neurodegenerative Disorders 389


12.3.4 Traumatic Brain Injury 392


12.4 Applications 394


12.4.1 Neuron-Directed Cellular Reprogramming 394


12.4.2 Tissue Nanotransfection 396


12.4.3 Cancer Interrogation 398


12.4.4 FISH On-Chip for Alzheimer's Disease 401


12.4.5 On-chip Brain Injury 403


12.4.6 Military 405


12.5 Limitations and Future Outlook 406


12.6 Summary 407


References 408


Index 419

We also recommend books

Strony www Białystok Warszawa
801 777 223