Księgarnia naukowa
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Wydawcy udostępniają darmowe zasoby na czas epidemii


Linear Algebra

Linear Algebra

Autorzy
Wydawnictwo Oxford University Press
Data wydania 29/01/1998
Liczba stron 242
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla szkół wyższych i kształcenia podyplomowego
ISBN 9780198502388
Kategorie Algebra
294.25 PLN (z VAT)
$78.84 / €64.80 / £57.75 /
Produkt na zamówienie
Dostawa 3-4 tygodnie
Ilość
Do schowka

Opis książki

This book covers the basic theory of matrices and vector spaces. The book's three main parts cover: matrices, vector spaces, bases and dimension; inner products bilinear and sesquilinear forms over vector spaces; and linear transformations, eigenvalues and eigenvectors, diagonalization, and Jordan normal form. An introduction to fields and polynomials over fields is also provided, and examples and applications are provided throughout. The approach throughout is rigorous, but without being unnecessarily abstract. In particular, this book would be suitable reading for a student with no prior exposure to abstract algebra. Although intended as a 'second course', the book is completely self-contained and all the material usually given in a 'first course' is presented fully in Part One, so the book provides a useful guide to the entire theory of vector spaces as usually studied in an undergraduate degree. Abstract methods are illustrated with concrete examples throughout, and more detailed examples highlight applications of linear algebra to analysis, geometry, differential equations, relativity and quantum mechanics. As such, the book provides a valuable introduction to a wide variety of mathematical methods.

Linear Algebra

Spis treści

1. Matrices; 2. Vector spaces; 3. Inner product spaces; 4. Bilinear and sesquilinear forms; 5. Orthogonal bases; 6. When in a form definite?; 7. Quadratic forms; 8. Linear transformations; 9. Polynomials; 10. Eigenvalues and eigenvectors; 11. The minimum polynomial; 12. Diagonalization; 13. Self-adjoint transformations; 14. The Jordan normal form

Polecamy również książki

Strony www Białystok Warszawa
801 777 223