ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Bioanalytical Chemistry 2e

Bioanalytical Chemistry 2e

Autorzy
Wydawnictwo John Wiley & Sons Inc
Data wydania 19/04/2016
Liczba stron 488
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9781118302545
Kategorie Chemia analityczna
604.80 PLN (z VAT)
$136.05 / €129.67 / £112.56 /
Produkt na zamówienie
Dostawa 5-6 tygodni
Ilość
Do schowka

Opis książki

A timely, accessible survey of the multidisciplinary field of bioanalytical chemistry * Provides an all in one approach for both beginners and experts, from a broad range of backgrounds, covering introductions, theory, advanced concepts and diverse applications for each method * Each chapter progresses from basic concepts to applications involving real samples * Includes three new chapters on Biomimetic Materials, Lab-on-Chip, and Analytical Methods * Contains end-of-chapter problems and an appendix with selected answers

Bioanalytical Chemistry 2e

Spis treści

Preface to Second Edition xix Preface to First Edition xxi Acknowledgments xxiii 1. Quantitative Instrumental Measurements 1 1.1. Introduction 1 1.2. Optical Measurements 2 1.2.1. UV-Visible Absorbance 3 1.2.2. Turbidimetry (Light-Scattering) 5 1.2.3. Fluorescence 5 1.2.4. Chemiluminescence and Bioluminescence 7 1.3. Electrochemical Measurements 8 1.3.1. Potentiometry 10 1.3.2. Amperometry 10 1.3.3. Impedimetry 11 1.4. Radiochemical Measurements 12 1.4.1. Scintillation Counting 12 1.4.2. Geiger Counting 12 1.5. Surface Plasmon Resonance 13 1.6. Calorimetry 14 1.6.1. Differential Scanning Calorimetry (DSC) 15 1.6.2. Isothermal Titration Calorimetry (ITC) 16 1.7. Automation: Microplates, Multiwell Liquid Dispensers and Microplate Readers 16 1.8. Calibration of Instrumental Measurements 18 1.8.1. External Standards 18 1.8.2. Internal Standards 19 1.8.3. Standard Additions 20 1.9. Quantitative and Semi-Quantitative Measurements 21 1.9.1. Exact Concentration 21 1.9.2. Positive or Negative Result 21 Suggested Reading 22 Problems 22 2. Spectroscopic Methods for the Quantitation of Classes of Biomolecules 23 2.1. Introduction 23 2.2. Total Protein 24 2.2.1. Lowry Method 24 2.2.2. Smith (BCA) Method 24 2.2.3. Bradford Method 26 2.2.4. Ninhydrin-Based Assay 27 2.2.5. Other Protein Quantitation Methods 28 2.3. Total DNA 31 2.3.1. Diaminobenzoic Acid (DABA) Method 32 2.3.2. Diphenylamine (DPA) Method 32 2.3.3. Other Fluorimetric Methods 33 2.4. Total RNA 34 2.5. Total Carbohydrate 35 2.5.1. Ferricyanide Method 35 2.5.2. Phenol-Sulfuric Acid Method 36 2.5.3. 2-Aminothiophenol Method 36 2.5.4. Purpald Assay for Bacterial Polysaccharides 37 2.6. Free Fatty Acids 37 References 38 Problems 39 3. Enzymes 41 3.1. Introduction 41 3.2. Enzyme Nomenclature 42 3.3. Enzyme Commission Numbers 43 3.4. Enzymes in Bioanalytical Chemistry 45 3.5. Enzyme Kinetics 46 3.5.1. Simple One-Substrate Enzyme Kinetics 48 3.5.2. Experimental Determination of Michaelis-Menten Parameters 50 3.5.2.1. Eadie-Hofstee Method 50 3.5.2.2. Hanes Method 50 3.5.2.3. Lineweaver-Burk Method 51 3.5.2.4. Cornish-Bowden-Eisenthal Method 52 3.5.3. Comparison of Methods for the Determination of KM Values 52 3.5.4. One-Substrate, Two-Product Enzyme Kinetics 54 3.5.5. Two-Substrate Enzyme Kinetics 54 3.5.6. Examples of Enzyme-Catalyzed Reactions and their Treatment 56 3.5.7. Curve Fitting for Enzyme Kinetic Data 57 3.6. Enzyme Activators 58 3.7. Enzyme Inhibitors 59 3.7.1. Competitive Inhibition 60 3.7.2. Noncompetitive Inhibition 60 3.7.3. Uncompetitive Inhibition 62 3.8. Enzyme Units and Concentrations 62 Suggested Reading 64 References 64 Problems 64 4. Quantitation of Enzymes and Their Substrates 67 4.1. Introduction 67 4.2. Substrate Depletion or Product Accumulation 68 4.3. Direct and Coupled Measurements 69 4.4. Classification of Methods 71 4.5. Instrumental Methods 73 4.5.1. Optical Detection 73 4.5.1.1. Absorbance 73 4.5.1.2. Fluorescence 75 4.5.1.3. Luminescence 77 4.5.1.4. Nephelometry 79 4.5.2. Electrochemical Detection 79 4.5.2.1. Amperometry 79 4.5.2.2. Potentiometry 80 4.5.2.3. Conductimetry 80 4.5.3. Other Detection Methods 81 4.5.3.1. Radiochemical 81 4.5.3.2. Manometry 81 4.5.3.3. Calorimetry 82 4.6. High-Throughput Assays for Enzymes and Inhibitors 82 4.7. Assays for Enzymatic Reporter Gene Products 84 4.8. Practical Considerations for Enzymatic Assays 85 Suggested Reading 86 References 86 Problems 87 5. Immobilized Enzymes 90 5.1. Introduction 90 5.2. Immobilization Methods 90 5.2.1. Nonpolymerizing Covalent Immobilization 91 5.2.1.1. Controlled-Pore Glass 92 5.2.1.2. Polysaccharides 93 5.2.1.3. Polyacrylamide 95 5.2.1.4. Acidic Supports 95 5.2.1.5. Anhydride Groups 96 5.2.1.6. Thiol Groups 97 5.2.2. Crosslinking with Bifunctional Reagents 97 5.2.3. Adsorption 98 5.2.4. Entrapment 99 5.2.5. Microencapsulation 100 5.3. Properties of Immobilized Enzymes 101 5.4. Immobilized Enzyme Reactors 107 5.5. Theoretical Treatment of Packed-Bed Enzyme Reactors 109 Suggested Reading 113 References 113 Problems 114 6. Antibodies 117 6.1. Introduction 117 6.2. Structural and Functional Properties of Antibodies 118 6.3. Polyclonal and Monoclonal Antibodies 121 6.4. Antibody-Antigen Interactions 122 6.5. Analytical Applications of Secondary Antibody-Antigen Interactions 124 6.5.1. Agglutination Reactions 124 6.5.2. Precipitation Reactions 126 Suggested Reading 129 References 129 Problems 129 7. Quantitative Immunoassays with Labels 131 7.1. Introduction 131 7.2. Labeling Reactions 132 7.3. Heterogeneous Immunoassays 134 7.3.1. Labeled-Antibody Methods 136 7.3.2. Labeled-Ligand Assays 136 7.3.3. Radioisotopes 139 7.3.4. Fluorophores 139 7.3.4.1. Indirect Fluorescence 140 7.3.4.2. Competitive Fluorescence 140 7.3.4.3. Sandwich Fluorescence 140 7.3.4.4. Fluorescence Excitation Transfer 140 7.3.4.5. Time-Resolved Fluorescence 141 7.3.5. Quantum Dots 142 7.3.6. Chemiluminescent Labels 143 7.3.7. Enzyme Labels 145 7.3.8. Lateral Flow Immunoassay 148 7.4. Homogeneous Immunoassays 149 7.4.1. Fluorescent Labels 149 7.4.1.1. Enhancement Fluorescence 149 7.4.1.2. Direct Quenching Fluorescence 150 7.4.1.3. Indirect Quenching Fluorescence 150 7.4.1.4. Fluorescence Polarization Immunoassay 151 7.4.1.5. Fluorescence Excitation Transfer 151 7.4.2. Enzyme Labels 152 7.4.2.1. Enzyme-Multiplied Immunoassay Technique 152 7.4.2.2. Substrate-Labelled Fluorescein Immunoassay 153 7.4.2.3. Apoenzyme Reactivation Immunoassay 153 7.4.2.4. Cloned Enzyme Donor Immunoassay 154 7.4.2.5. Enzyme Inhibitory Homogeneous Immunoassay 154 7.5. Evaluation of New Immunoassay Methods 155 Suggested Reading 160 References 160 Problems 161 8. Biosensors 166 8.1. Introduction 166 8.2. Biosensor Diversity and Classification 169 8.3. Recognition Agents 171 8.3.1. Natural Recognition Agents 171 8.3.2. Artificial Recognition Agents 172 8.4. Response of Enzyme-Based Biosensors 175 8.5. Examples of Biosensor Configurations 178 8.5.1. Ferrocene-Mediated Amperometric Glucose Sensor 178 8.5.2. Potentiometric Biosensor for Phenyl Acetate 180 8.5.3. Evanescent-Wave Fluorescence Biosensor for Bungarotoxin 181 8.5.4. Optical Biosensor for Glucose Based on Fluorescence Resonance Energy Transfer 183 8.5.5. Piezoelectric Sensor for Nucleic Acid Detection 184 8.5.6. Enzyme Thermistors 186 8.5.7. Fluorescence Sensor for Nitroaromatic Explosives Based on a Molecularly Imprinted Polymer 187 8.5.8. Immunosensor Microwell Arrays from Gold Compact Disks 188 8.5.9. Nanoparticle-Enhanced Detection of Thrombin by SPR 190 8.5.10. Environmental BOD and Toxicity Biosensors Based on Viable Cells 192 8.5.11. Detection of Viruses using a Surface Acoustic Wave (SAW) Biosensor 193 8.5.12. MEMS Microcantilever Biosensor for Virus Detection 196 8.5.13. DNA Microarrays 198 8.6. Evaluation of Biosensor Perfomance 201 8.7. In Vivo Applications of Biosensors 202 8.7.1. Biocompatible Materials 203 8.7.2. Physiological Environment of the Human Body 203 8.7.3. The Artificial Pancreas 205 8.7.4. An Enzymatic Fuel Cell as a Component of an Implanted Biosensing System 205 8.7.5. Other Examples of Implantable Biosensors 206 Suggested Reading 207 References 207 Problems 209 9. Directed Evolution for the Design of Macromolecular Reagents 210 9.1. Introduction 210 9.2. Rational Design and Directed Evolution 211 9.3. Generation of Genetic Diversity 214 9.3.1. Polymerase Chain Reaction and Error-Prone PCR 215 9.3.2. DNA Shuffling 217 9.4. Linking Genotype and Phenotype 217 9.4.1. Cell Expression and Cell Surface Display (In vivo) 218 9.4.2. Phage Display (In vivo) 218 9.4.3. Ribosome Display (In vitro) 219 9.4.4. mRNA-Peptide Fusion (In vitro) 220 9.4.5. Microcompartmentalization (In vitro) 220 9.5. Identification and Selection of Successful Variants 221 9.5.1. Identification of Successful Variants Based on Binding Properties 222 9.5.2. Identification of Successful Variants Based on Catalytic Activity 222 9.6. Examples of Directed Evolution Experiments 224 9.6.1. Directed Evolution of Galactose Oxidase 224 9.6.2. -Hemolysin Evolution 225 Suggested Reading 226 References 226 Problems 227 10. Image-Based Bioanalysis 229 10.1. Introduction 229 10.2. Magnification and Resolution 230 10.3. Optical Microscopy 231 10.3.1. The Compound Light Microscope 231 10.3.2. The Confocal Microscope 231 10.3.3. Sample Preparation 232 10.3.4. General and Selective Stains 233 10.3.5. Fluorescence In situ Hybridization 234 10.3.6. Green Fluorescent Protein and its Analogues 234 10.4. Electron Microscopy 234 10.4.1. Principles and Instrumentation 234 10.4.2. Sample Preparation 235 10.4.3. Transmission Electron Microscopy (TEM) 236 10.4.4. Scanning Electron Microscopy (SEM) 236 10.5. Scanning Tunneling Microscopy 237 10.5.1. Principles and Instrumentation 237 10.5.2. Biological Applications 237 10.6. Atomic Force Microscopy (AFM) 237 10.6.1. Cantilevers and Operational Modes 237 10.6.2. Samples and Substrates 239 10.6.3. Biological Applications 239 10.6.4. Four-Dimensional (4D) Scanning 240 10.7. Scanning Electrochemical Microscopy (SECM) 240 10.7.1. Principles and Instrumentation 240 10.7.2. Samples and Substrates 241 10.7.3. Biological Applications 241 Suggested Reading 242 References 242 Problems 243 11. Principles of Electrophoresis 244 11.1. Introduction 244 11.2. Electrophoretic Support Media 248 11.2.1. Paper 248 11.2.2. Starch Gels 249 11.2.3. Polyacrylamide Gels 250 11.2.4. Agarose Gels 254 11.2.5. Polyacrylamide-Agarose Gels 254 11.3. Effect of Experimental Conditions Onelectrophoretic Separations 254 11.4. Electric Field Strength Gradients 255 11.5. Pulsed Field Gel Electrophoresis (PFGE) 256 11.6. Detection of Proteins and Nucleic Acids After Electrophoretic Separation 258 11.6.1. Stains and Dyes 258 11.6.2. Detection of Enzymes by Substrate Staining 260 11.6.3. The Southern Blot 260 11.6.4. The Northern Blot 262 11.6.5. The Western Blot 262 11.6.6. Detection of DNA Fragments on Membranes with DNA Probes 263 Suggested Reading 265 References 266 Problems 266 12. Applications of Zone Electrophoresis 268 12.1. Introduction 268 12.2. Determination of Protein Net Charge and Molecular Weight Using PAGE 268 12.3. Determination of Protein Subunit Composition and Subunit Molecular Weights 270 12.4. Molecular Weight of DNA by Agarose Gel Electrophoresis 272 12.5. Identification of Isoenzymes 273 12.6. Diagnosis of Genetic (Inherited) Disorders 274 12.7. DNA Fingerprinting and Restriction Fragment Length Polymorphism 275 12.8. DNA Sequencing with the Maxam-Gilbert Method 279 12.9. Immunoelectrophoresis 282 Suggested Reading 287 References 287 Problems 288 13. Isoelectric Focusing and 2D Electrophoresis 290 13.1. Introduction 290 13.2. Carrier Ampholytes 291 13.3. Modern IEF with Carrier Ampholytes 293 13.4. Immobilized pH Gradients (IPGs) 296 13.5. Two-Dimensional Electrophoresis 299 13.6. Difference Gel Electrophoresis (DIGE) 301 Suggested Reading 303 References 303 Problems 304 14. Capillary Electrophoresis 306 14.1. Introduction 306 14.2. Electroosmosis 307 14.3. Elution of Sample Components 308 14.4. Sample Introduction 309 14.5. Detectors for Capillary Electrophoresis 310 14.5.1. Laser-Induced Fluorescence Detection 311 14.5.2. Mass Spectrometric Detection 313 14.5.3. Amperometric Detection 315 14.5.4. Radiochemical Detection 318 14.6. Capillary Polyacrylamide Gel Electrophoresis (C-PAGE) 319 14.7. Capillary Isoelectric Focusing (CIEF) 321 Suggested Reading 322 References 323 Problems 323 15. Centrifugation Methods 325 15.1. Introduction 325 15.2. Sedimentation and Relative Centrifugal g Force 325 15.3. Centrifugal Forces in Different Rotor Types 327 15.3.1. Swinging-Bucket Rotors 327 15.3.2. Fixed-Angle Rotors 328 15.3.3. Vertical Rotors 328 15.4. Clearing Factor (K) 329 15.5. Density Gradients 330 15.5.1. Materials Used to Generate a Gradient 331 15.5.2. Constructing Pre-Formed and Self-Generated Gradients 331 15.5.3. Redistribution of the Gradient in Fixed-Angle and Vertical Rotors 333 15.6. Types of Centrifugation Techniques 333 15.6.1. Differential Centrifugation 334 15.6.2. Rate-Zonal Centrifugation 334 15.6.3. Isopycnic Centrifugation 336 15.7. Harvesting Samples 336 15.8. Analytical Ultracentrifugation 336 15.8.1. Instrumentation 337 15.8.2. Sedimentation Velocity Analysis 338 15.8.3. Sedimentation Equilibrium Analysis 341 15.9. Selected Examples 342 15.9.1. Analytical Ultracentrifugation for Quaternary Structure Elucidation 342 15.9.2. Isolation of Retroviruses by Self-Generated Gradients 343 15.9.3. Isolation of Lipoproteins from Human Plasma 344 15.9.4. Centrifugal Microfluidic Analysis 344 Suggested Reading 346 References 346 Problems 347 16.Chromatography of Biomolecules 349 16.1. Introduction 349 16.2. Units and Definitions 350 16.3. Plate Theory of Chromatography 350 16.4. Rate Theory of Chromatography 351 16.5. Size Exclusion (Gel Filtration) Chromatography 353 16.6. Stationary Phases For Size Exclusion Chromatography 358 16.6.1. Particulate Gels 358 16.6.2. Monolithic Stationary Phases 360 16.7. Affinity Chromatography 360 16.7.1. Immobilization of Affinity Ligands 362 16.7.2. Elution Methods 364 16.7.3. Determination of Association Constants by High Performance Affinity Chromatography 364 16.8. Ion-exchange Chromatography 368 16.8.1. Retention Model for Ion-Exchange Chromatography of Polyelectrolytes 369 16.8.2. Further Advances in Ion-Exchange Chromatography 374 Suggested Reading 374 References 374 Problems 375 17. Mass Spectrometry of Biomolecules 377 17.1. Introduction 377 17.2. Basic Description of the Instrumentation 379 17.2.1. Soft Ionization Sources 379 17.2.1.1. Fast Atom/Ion Bombardment (FAB) 380 17.2.1.2. Electrospray Ionization (ESI) 380 17.2.1.3. Matrix-Assisted Laser Desorption/Ionization (MALDI) 381 17.2.2. Mass Analyzers 382 17.2.3. Detectors 385 17.3. Interpretation of Mass Spectra 386 17.4. Biomolecule Molecular Weight Determination 388 17.5. Protein Identification 392 17.6. Protein-Peptide Sequencing 393 17.7. Nucleic Acid Applications 397 17.8. Bacterial Mass Spectrometry 398 17.9. Mass Spectrometry Imaging 399 Suggested Reading 401 References 401 Problems 402 18. Micro-TAS, Lab-on-a-Chip, and Microarray Devices 404 18.1. Introduction 404 18.2. Device Fabrication Materials and Methods 405 18.3. Microfluidics 405 18.3.1. Fluid Transport 405 18.3.2. Valves and Reservoirs 406 18.3.3. Mixing and Sample Separation 406 18.4. Detectors 407 18.5. Examples of Bioanalytical Devices 407 18.5.1. DNA Separation Using a Nanofence Array Microfluidic Device 408 18.5.2. Two Dimensional Electrophoresis on a Microfluidic Chip 409 18.5.3. Microfluidic Antibody Capture for Single-Cell Proteomics 410 18.5.4. Multiplexed PCR Amplification and DNA Detection on a Microfluidic Chip 410 18.5.5. Silicone Protein Separation Chip Based on a Grafted Ion-Exchange Polymer 411 18.5.6. Circular, Biofunctionalized PEG Microchannels for Cell Adhesion Studies 411 Suggested Reading 412 References 412 Problems 413 19. Validation of New Bioanalytical Methods 414 19.1. Introduction 414 19.2. Precision and Accuracy 415 19.3. Mean and Variance 416 19.4. Relative Standard Deviation and Other Precision Estimators 417 19.4.1. Distribution of Errors and Confidence Limits 418 19.4.2. Linear Regression and Calibration 419 19.4.3. Precision Profiles 420 19.4.4. Limit of Quantitiation and Detection 421 19.4.5. Linearizing Sigmoidal Curves (Four-Parameter Log-Logit Model) 422 19.4.6. Effective Dose Method 423 19.5. Estimation of Accuracy 424 19.5.1. Standardization 424 19.5.2. Matrix Effects 425 19.5.2.1. Recovery 425 19.5.2.2. Parallelism 426 19.5.3. Interferences 426 19.6. Qualitative (Screening) Assays 427 19.6.1. Figures of Merit for Qualitative (Screening) Assays 427 19.7. Examples of Validation Procedures 428 19.7.1. Validation of a Qualitative Antibiotic Susceptibility Test 428 19.7.2. Measurement of Plasma Homocysteine by Fluorescence Polarization Immunoassay (FPIA) Methodology 429 19.7.3. Determination of Enzymatic Activity of -Galactosidase 433 19.7.4. Establishment of a Cutoff Value for Semi-Quantitative Assays for Cannabinoids 434 Suggested Reading 435 References 436 Answers to Selected Problems 437 Index 449

Polecamy również książki

Strony www Białystok Warszawa
801 777 223