ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Statistical Thermodynamics - Basics and Applications to Chemical Systems

Statistical Thermodynamics - Basics and Applications to Chemical Systems

Autorzy
Wydawnictwo John Wiley & Sons Inc
Data wydania 12/04/2019
Liczba stron 352
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9781118305119
Kategorie Prawdopodobieństwo i statystyka
471.45 PLN (z VAT)
$106.05 / €101.08 / £87.75 /
Produkt na zamówienie
Dostawa 5-6 tygodni
Ilość
Do schowka

Opis książki

Written to introduce readers to molecular descriptions of thermodynamics, chemical systems, and biomolecules, Statistical Thermodynamics discusses the aspects of statistical thermodynamics of most use and interest to chemistry students. Topics include: probability; energy and interactions; statistical mechanics; harmonic oscillators; ideal gas; imperfect gas; heat capacities of gas; rubber elasticity; conformation of polymers; surface adsorption; law of mass action; Ising model; and more. Rich with illustrations and tables to illuminate rather difficult concepts, the text equips students with the ability to apply the method to their own systems.

Statistical Thermodynamics - Basics and Applications to Chemical Systems

Spis treści

Preface xiii





Acknowledgments xvii





About the Companion Website xix





Symbols and Constants xxi





1 Introduction 1





1.1 Classical Thermodynamics and Statistical Thermodynamics 1





1.2 Examples of Results Obtained from Statistical Thermodynamics 2





1.2.1 Heat Capacity of Gas of Diatomic Molecules 2





1.2.2 Heat Capacity of a Solid 3





1.2.3 Blackbody Radiation 3





1.2.4 Adsorption 4





1.2.5 Helix-Coil Transition 5





1.2.6 Boltzmann Factor 6





1.3 Practices of Notation 6





2 Review of Probability Theory 9





2.1 Probability 9





2.2 Discrete Distributions 11





2.2.1 Binomial Distribution 12





2.2.2 Poisson Distribution 13





2.2.3 Multinomial Distribution 14





2.3 Continuous Distributions 15





2.3.1 Uniform Distribution 19





2.3.2 Exponential Distribution 19





2.3.3 Normal Distribution 21





2.3.4 Distribution of a Dihedral Angle 21





2.4 Means and Variances 22





2.4.1 Discrete Distributions 22





2.4.2 Continuous Distributions 26





2.4.3 Central Limit Theorem 27





2.5 Uncertainty 28





Problems 31





3 Energy and Interactions 35





3.1 Kinetic Energy and Potential Energy of Atoms and Ions 35





3.1.1 Kinetic Energy 35





3.1.2 Gravitational Potential 36





3.1.3 Ion in an Electric Field 36





3.1.4 Total Energy of Atoms and Ions 37





3.2 Kinetic Energy and Potential Energy of Diatomic Molecules 37





3.2.1 Kinetic Energy (Translation, Rotation, Vibration) 37





3.2.2 Dipolar Potential 42





3.2.2.1 Potential of a Permanent Dipole 42





3.2.2.2 Potential of an Induced Dipole 44





3.3 Kinetic Energy of Polyatomic Molecules 46





3.3.1 Linear Polyatomic Molecule 46





3.3.2 Nonlinear Polyatomic Molecule 48





3.4 Interactions Between Molecules 50





3.4.1 Excluded-Volume Interaction 52





3.4.2 Coulomb Interaction 52





3.4.3 Dipole-Dipole Interaction 53





3.4.4 van der Waals Interaction 54





3.4.5 Lennard-Jones Potential 55





3.5 Energy as an Extensive Property 57





3.6 Kinetic Energy of a Gas Molecule in Quantum Mechanics 58





3.6.1 Quantization of Translational Energy 58





3.6.2 Quantization of Rotational Energy 61





3.6.3 Quantization of Vibrational Energy 63





3.6.4 Electronic Energy Levels 65





3.6.5 Comparison of Energy Level Spacings 66





Problems 67





4 Statistical Mechanics 69





4.1 Basic Assumptions, Microcanonical Ensembles, and Canonical Ensembles 69





4.1.1 Basic Assumptions 69





4.1.2 Microcanonical Ensembles 73





4.1.3 Canonical Ensembles 75





4.2 Probability Distribution in Canonical Ensembles and Partition Functions 77





4.2.1 Probability Distribution 77





4.2.2 Partition Function for a System with Discrete States 79





4.2.3 Partition Function for a System with Continuous States 81





4.2.4 Energy Levels and States 83





4.3 Internal Energy 88





4.4 Identification of ? 89





4.5 Equipartition Law 91





4.6 Other Thermodynamic Functions 93





4.7 Another View of Entropy 97





4.8 Fluctuations of Energy 99





4.9 Grand Canonical Ensembles 100





4.10 Cumulants of Energy 107





Problems 110





5 Canonical Ensemble of Gas Molecules 113





5.1 Velocity of Gas Molecules 113





5.2 Heat Capacity of a Classical Gas 116





5.2.1 Point Mass 117





5.2.2 Rigid Dumbbell 117





5.2.3 Elastic Dumbbell 118





5.3 Heat Capacity of a Quantum-Mechanical Gas 120





5.3.1 General Formulas 120





5.3.2 Translation 122





5.3.3 Rotation 124





5.3.4 Vibration 127





5.3.5 Comparison with Classical Models 128





5.4 Distribution of Rotational Energy Levels 129





5.5 Conformations of a Molecule 130





Problems 132





6 Indistinguishable Particles 135





6.1 Distinguishable Particles and Indistinguishable Particles 135





6.2 Partition Function of Indistinguishable Particles 137





6.2.1 System of Distinguishable Particles 137





6.2.2 System of Indistinguishable Particles 137





6.3 Condition of Nondegeneracy 142





6.4 Significance of Division by N! 144





6.4.1 Gas in a Two-Part Box 144





6.4.2 Chemical Potential 145





6.4.3 Mixture of Two Gases 146





6.5 Indistinguishability and Center-of-Mass Movement 147





6.6 Open System of Gas 147





Problems 149





7 Imperfect Gas 153





7.1 Virial Expansion 153





7.2 Molecular Expression of Interaction in the Canonical Ensemble 157





7.3 Second Virial Coefficients in Different Models 164





7.3.1 Hard-Core Repulsion Only 164





7.3.2 Square-well Potential 165





7.3.3 Lennard-Jones Potential 167





7.4 Joule-Thomson Effect 167





Problems 171





8 Rubber Elasticity 175





8.1 Rubber 175





8.2 Polymer Chain in One Dimension 176





8.3 Polymer Chain in Three Dimensions 180





8.4 Network of Springs 184





Problems 185





9 Law of Mass Action 189





9.1 Reaction of Two Monatomic Molecules 190





9.2 Decomposition of Homonuclear Diatomic Molecules 193





9.3 Isomerization 195





9.4 Method of the Steepest Descent 197





Problems 198





10 Adsorption 201





10.1 Adsorption Phenomena 201





10.2 Langmuir Isotherm 202





10.3 BET Isotherm 206





10.4 Dissociative Adsorption 211





10.5 Interaction Between Adsorbed Molecules 213





Problems 213





11 Ising Model 217





11.1 Model 217





11.2 Partition Function 220





11.2.1 One-Dimensional Ising Model 220





11.2.2 Calculating Statistical Averages 221





11.2.2.1 Average Number of Up Spins 222





11.2.2.2 Average of the Number of Spin Alterations (Number of Domains - 1) 222





11.2.2.3 Domain Size 223





11.2.2.4 Size of a Domain of Uniform Spins 223





11.2.3 A Few Examples of 1D Ising Model 223





11.2.3.1 Linear Ising Model, N = 3 223





11.2.3.2 Ring Ising Model, N = 3 225





11.2.3.3 Ring Ising Model, N = 4 225





11.3 Mean-FieldTheories 226





11.3.1 Bragg-Williams (B-W) Approximation 227





11.3.2 Flory-Huggins (F-H) Approximation 231





11.3.3 Approximation by a Mean-Field (MF) Theory 235





11.4 Exact Solution of 1D Ising Model 236





11.4.1 General Formula 236





11.4.2 Large-N Approximation 239





11.4.3 Exact Partition Function for Arbitrary N 241





11.4.4 Ring Ising Model, Arbitrary N 244





11.4.5 Comparison of the Exact Results with Those of Mean-Field Approximations 245





11.5 Variations of the Ising Model 247





11.5.1 System of Uniform Spins 247





11.5.2 Random Local Fields of Opposite Directions 249





11.5.3 Dilute Local Fields 252





Problems 254





12 Helical Polymer 263





12.1 Helix-Forming Polymer 263





12.2 Optical Rotation and Circular Dichroism 266





12.3 Pristine Poly(n-hexyl isocyanate) 267





12.4 Variations to the Helical Polymer 271





12.4.1 Copolymer of Chiral and Achiral Isocyanate Monomers 272





12.4.2 Copolymer of R- and S-Enantiomers of Isocyanate 274





Problems 274





13 Helix-Coil Transition 277





13.1 Historical Background 277





13.2 Polypeptides 281





13.3 Zimm-Bragg Model 283





Problems 289





14 Regular Solutions 291





14.1 Binary Mixture of Equal-Size Molecules 291





14.1.1 Free Energy of Mixing 291





14.1.2 Derivatives of the Free Energy of Mixing 296





14.1.3 Phase Separation 300





14.2 Binary Mixture of Molecules of Different Sizes 304





Problems 312





Appendix A Mathematics 315





A.1 Hyperbolic Functions 315





A.2 Series 317





A.3 Binomial Theorem and Trinomial Theorem 317





A.4 Stirling's formula 318





A.5 Integrals 318





A.6 Error Functions 318





A.7 Gamma Functions 319





References 321





Index 325

Polecamy również książki

Strony www Białystok Warszawa
801 777 223