Księgarnia naukowa
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Principles and Applications of Fermentation Technology

Principles and Applications of Fermentation Technology

Autorzy
Wydawnictwo John Wiley & Sons Inc
Data wydania 07/09/2018
Liczba stron 480
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9781119460268
Kategorie Biochemia
886.00 PLN (z VAT)
$227.82 / €203.85 / £188.81 /
Produkt dostępny
Przesyłka w 2 dni
Ilość
Do schowka

Opis książki

The book covers all aspects of fermentation technology such as principles, reaction kinetics, scaling up of processes, and applications. The 20 chapters written by subject matter experts are divided into two parts: Principles and Applications. In the first part subjects covered include: Modelling and kinetics of fermentation technology Sterilization techniques used in fermentation processes Design and types of bioreactors used in fermentation technology Recent advances and future prospect of fermentation technology The second part subjects covered include: Lactic acid and ethanol production using fermentation technology Various industrial value-added product biosynthesis using fermentation technology Microbial cyp450 production and its industrial application Polyunsaturated fatty acid production through solid state fermentation Application of oleaginous yeast for lignocellulosic biomass based single cell oil production Utilization of micro-algal biomass for bioethanol production Poly-lactide production from lactic acid through fermentation technology Bacterial cellulose and its potential impact on industrial applications

Principles and Applications of Fermentation Technology

Spis treści

Part I: Principles of Fermentation Technology 1


1. Fermentation Technology: Current Status and Future Prospects 3
Ritika Joshi, Vinay Sharma, and Arindam Kuila


1.1. Introduction 3


1.2. Types of Fermentation Processes 4


1.2.1. Solid-state Fermentation 4


1.2.2. Submerged Fermentation 5


1.2.2.1. Batch Cultivation 5


1.2.2.2. Substrates Used for Fermentation 5


1.3. Enzymes 6


1.3.1. Bacterial Enzymes 6


1.3.2. Fungal Enzymes 6


1.4. Antibiotics 7


1.5. Fed-Batch Cultivation 8


1.6. Application of SSF 9


1.6.1. Enzyme Production 9


1.6.2. Organic Acids 10


1.6.3. Secondary Metabolites 10


1.6.4. Antibiotic 10


1.6.5. Biofuel 10


1.6.6. Biocontrol Agents 11


1.6.7. Vitamin 11


1.7. Future Perspectives 11


References 12


2. Modeling and Kinetics of Fermentation Technology 15
Biva Ghosh, Debalina Bhattacharya, and Mainak Mukhopadhyay


2.1. Introduction 16


2.2. Modeling 17


2.2.1. Importance of Modeling 18


2.2.2. Components of Modeling 20


2.2.2.1. Control Volume 20


2.2.2.2. Variables 22


2.2.2.3. Parameters 22


2.2.2.4. Mathematical Model 22


2.2.2.5. Automatization 23


2.3. Kinetics of Modeling 26


2.3.1. Thermodynamic 27


2.3.2. Phenomenological 27


2.3.3. Kinetic 27


2.3.3.1. Volumetric Rate and Specific Rate 28


2.3.3.2. Rate Expression for Microbial Culture 31


2.4. Conclusion 41


References 41


3. Different Sterilization Techniques used in Fermentation Processes 45
Shivani Sharma, Arindam Kuila, and Vinay Sharma


3.1. Introduction 45


3.2. Rate of Microbial Death 46


3.3. How do Sterilants Work? 47


3.4. Types of Sterilization 47


3.4.1. Heat 48


3.4.2. Pressure 48


3.4.3. Radiation 48


3.4.4. Filtration 49


3.4.5. Steam 49


3.5. Sterilization of the Culture Media 49


3.5.1. Batch Sterilization 49


3.5.2. Continuous Sterilization 50


3.6. Sterilization of the Additives 51


3.7. Sterilization of the Fermenter Vessel 51


3.8. Filter Sterilization 51


3.8.1. Diffusion 51


3.8.2. Inertial Impaction 51


3.8.3. Electrostatic Attraction 52


3.8.4. Interception 52


3.9. Sterilization of Air 52


References 52


4. Advances in Fermentation Technology: Principle and their Relevant Applications 53
Monika Choudhary, Sunanda Joshi, Sameer Suresh Bhagyawant, and Nidhi Srivastava


4.1. Introduction 53


4.2. Basic Principle of Fermentation 54


4.3. Biochemical Process 56


4.4. Fermentation Methodology 58


4.5. Biochemical Mechanism 59


4.6. Fermentation and its Industrial Applications 60


4.7. Relevance of Fermentation 61


4.8. Conclusion 62


References 62


5. Fermentation Technology Prospecting on Bioreactors/Fermenters: Design and Types 65
Gauri Singhal, Vartika Verma, Sameer Suresh Bhagyawant, and Nidhi Srivastava


5.1. Introduction 65


5.2. Bioreactor and Fermenter 67


5.3. Types of Fermenter and Bioreactor 68


5.3.1. Laboratory Scale Fermenters 68


5.3.2. Pilot Scale Fermenters 69


5.3.3. Industrial Scale Fermenter 69


5.4. Design and Operation 69


5.4.1. Fermenter Vessel 72


5.4.2. Heating and Cooling Apparatus 72


5.4.3. Sealing Assembly 73


5.4.4. Baffles 73


5.4.5. Impeller 73


5.4.6. Sparger 74


5.4.7. Feed Ports 74


5.4.8. Foam Control 74


5.4.9. Valves 74


5.4.10. Safety Valves 75


5.5. Classification of Bioreactor 75


5.6. Types of Fermenter/Bioreactor 75


5.6.1. Stirred Tank Fermentor 75


5.6.2. Airlift Fermentor 76


5.6.3. Bubble Column Fermentor 78


5.6.4. Packed Bed Reactors 78


5.6.5. Fluidized Bed Bioreactor 80


5.6.6. Photobioreactor 80


5.6.7. Membrane Bioreactor 81


5.7. Conclusion 82


References 82


Part II: Applications of Fermentation Technology 85


6. Lactic Acid and Ethanol: Promising Bio-Based Chemicals from Fermentation 87
Andrea Komesu, Johnatt Oliveira, LUIZA Helena da Silva Martins, Maria Regina Wolf Maciel, Rubens Maciel Filho


6.1. Introduction 88


6.2. Generalities about LA and Ethanol 89


6.3. Fermentation Methods to LA and Ethanol Production 93


6.4. Potential Raw Materials for Biotechnology Production 95


6.4.1. Potential Raw Materials for LA Production 95


6.4.2. Potential Raw Materials for Bioethanol Production 98


6.5. Challenges in LA and Ethanol Production 103


6.6. Integrated Ethanol and LA Production 105


6.7. Concluding Remarks 108


References 109


7. Application of Fermentation Strategies for Improved Laccase Production: Recent Developments 117
Priyanka Ghosh, Arpan Das, and Uma Ghosh


7.1. Introduction 117


7.1.1. What is Laccase? 119


7.2. Major Factors Influencing Fermentation Processes for Laccase Production 120


7.2.1. Influence of Carbon Source 120


7.2.2. Influence of Nitrogen Source 122


7.2.3. Influence of Temperature 123


7.2.4. Influence of pH 124


7.2.5. Influence of Inducer 124


7.3. Type of Cultivation 126


7.3.1. Submerged Fermentation 126


7.3.2. Solid-State Fermentation 126


7.4. Biotechnological Application of Laccases 129


7.4.1. Food Industry 129


7.4.2. Textile Industries 131


7.4.3. Paper Industry 131


7.4.4. Bioremediation 131


7.4.5. Pharmaceutical Industry 132


7.5. Conclusion 132


References 133


8. Use of Fermentation Technology for Value Added Industrial Research 141
Biva Ghosh, Debalina Bhattacharya, and Mainak Mukhopadhyay


8.1. Introduction 142


8.2. Fermentation 143


8.3. Biofuel Production 144


8.3.1. Biohydrogen 144


8.3.2. Biodiesel 145


8.3.3. Bioethanol 146


8.4. 1, 3-Propanediol 146


8.5. Lactic Acid 147


8.6. Polyhydroxyalkanoates 149


8.7. Exopolysaccharides 150


8.8. Succinic Acid 151


8.9. Flavoring and Fragrance Substances 152


8.10. Hormones and Enzymes 153


8.11. Conclusion 156


References 157


9. Valorization of Lignin: Emerging Technologies and Limitations in Biorefineries 163
Gourav Dhiman, Nadeem Akhtar, and Gunjan Mukherjee


9.1. Introduction 164


9.2. Lignocellulosic Material: Focus on Second Generation Bio-fuel 165


9.3. Composition and Biosynthesis of Lignin 166


9.3.1. Structure Analysis of Lignin 167


9.3.2. Degradative Analytical Techniques (Oxidation, Reduction, Hydrolysis, and Acidolysis) 167


9.3.3. Non-Degradative Analytical Techniques (Thioglycolic Acid-TGA and Acetyl Bromide-ACBR) 168


9.4. Bioengineering of Lignin 168


9.4.1. Reducing the Recalcitrance Nature of Biomass 169


9.4.2. Improving Lignin Content for Production of High Energy Feedstock 170


9.5. Lignin Separation and Recovery 171


9.5.1. Chemical- and Physical-Based Lignin Separations 171


9.5.2. Biological Degradation of Lignin 172


9.6. Lignin-Based Materials and Polymers 172


9.7. Lignin-Based Fuels and Chemicals 173


9.8. Concluding Remarks and Future Prospects 175


References 175


10. Exploring the Fermentation Technology for Biocatalysts Production 181
Ronivaldo Rodrigues da Silva


10.1. Introduction 181


10.2. Bioprocesses and Micro-Organism in Biotechnology 181


10.3. Biotechnology Fermentation 182


10.3.1. Submerged Fermentation 183


10.3.2. Solid State Fermentation 183


10.4. Production of Enzymes 183


References 186


11. Microbial CYP450: An Insight into Its Molecular/Catalytic Mechanism, Production and Industrial Application 189
Abhilek Kumar Nautiyal, Arijit Jana, Sourya Bhattacharya, Tripti Sharma, Neha Bansal, Sree Sai Ogetiammini, Debashish Ghosh, Saugata Hazra, Diptarka Dasgupta


11.1. Introduction 190


11.2. Microbial Cytochrome P450 192


11.3. Extent of P450s in Microbial Genome 193


11.4. Structure, Function and Catalytic Cycle 194


11.5. Strain Engineering for Improved Activity 198


11.6. Producion Strategies of CYP450 204


11.6.1. Bioreactor Consideration 204


11.6.2. Protein Recovery 204


11.7. Applications 205


11.7.1. Emvironmental Application 206


11.7.2. Medical Application 207


11.8. Conclusion 208


References 209


12. Production of Polyunsaturated Fatty Acids by Solid State Fermentation 217
Bruno Carlesso Aita, Stefani Segato Spannemberg, Raquel Cristine Kuhn, Marcio Antonio Mazutti


12.1. Introduction 217


12.2. PUFAs Production by SSF 220


12.3. Microorganisms Used for PUFAs Production by SSF 222


12.4. Main Process Parameters 223


12.4.1. Moisture Content of the Substrate 223


12.4.2. Temperature 228


12.4.3. Substrate 229


12.4.4. Carbon to Nitrogen (C/N) Ratio 230


12.4.5. pH 230


12.4.6. Incubation Time 231


12.5. Bioreactors 231


12.6. Extraction of Microbial Oil 232


12.7. Concluding Remarks 233


References 234


13. Solid State Fermentation - A Stimulating Process for Valorization of Lignocellulosic Feedstocks to Biofuel 239
Arpan Das and Priyanka Ghosh


13.1. Introduction 240


13.2. Potential of Lignocellulosic Biomass for Biofuel Production 242


13.3. Structure of Lignocellulose 243


13.3.1. Cellulose 244


13.3.2. Hemicellulose 245


13.3.3. Lignin 245


13.4. Biomass Recalcitrance 246


13.5. Pre-treatment of Lignocellulosic Biomass 246


13.5.1. Chemical Pre-treatment 247


13.5.2. Physical Pre-treatment 248


13.5.3. Biological Pre-treatment 248


13.5.4. Inhibitors Released During Pre-treatment 249


13.6. Hydrolysis 249


13.7. Limitations of Enzymatic Hydrolysis 250


13.8. Fermentation 251


13.8.1. Separate Hydrolysis and Fermentation (SHF) 252


13.8.2. Simultaneous Saccharification and Fermentation (SSF) 252


13.8.3. Consolidated Bioprocessing 254


13.9. Concluding Remarks 255


References 256


14. Oleaginous Yeasts: Lignocellulosic Biomass Derived Single Cell Oil as Biofuel Feedstock 263
Neha Bansal, Mahesh B Khot, Arijit Jana, Abhilek K Nautiyal, Tripti Sharma, Diptarka Dasgupta, Swati Mohapatra, Sanoj Kumar Yadav, Saugata Hazra, Debashish Ghosh


14.1. Introduction 264


14.2. Oleaginous Yeasts: A Brief Account 265


14.3. Lignocellulosic Biomass and its Deconstruction 267


14.4. Biochemistry of Lipid Biosynthesis 276


14.5. Genetic Modification for Enhancing Lipid Yield 278


14.5.1. Over-expression of Key Metabolic Genes 279


14.5.2. Blocking Competing Pathways 282


14.5.3. Challenges in Genetic Engineering of Yeast 282


14.6. Fermentative Cultivation, Recovery of Yeast Lipids as SCO and Production of Biofuel 283


14.7. Characterization of Yeast SCO: Implications towards Biodiesel Properties 289


14.8. Concluding Remarks 294


References 294


15. Pre-treatment of Lignocellulose for the Production of Biofuels 309
Biva Ghosh, Debalina Bhattacharya, Mainak Mukhopadhyay


15.1. Introduction 309


15.2. Lignocellulose 311


15.3. Parameters Effecting the Hydrolysis of Lignocellulose 312


15.3.1. Crystallinity of Cellulose 312


15.3.2. Cellulose Degree of Polymerization 313


15.3.3. Effect of Accessible Surface Area 313


15.3.4. Encapsulation by Lignin 313


15.3.5. Hemicellulose Content 314


15.3.6. Porosity 314


15.4. Pre-treatment of lignocellulose 314


15.4.1. Physical Pre-treatment 315


15.4.1.1. Milling 315


15.4.1.2. Microwave 316


15.4.1.3. Ultrasound 317


15.4.1.4. Irradiation 317


15.4.1.5. Mechanical Extrusion 317


15.4.1.6. Pyrolysis 318


15.4.1.7. Pulse Electric Field (PEF) 319


15.4.2. Chemical Pre-treatment 319


15.4.2.1. Alkaline Pre-treatment 319


15.4.2.2. Dilute-acid Pre-treatment 320


15.4.2.3. Ionic Liquids 322


15.4.2.4. Deep Eutectic Solvents 322


15.4.2.5. Natural Deep Eutectic Solvents 323


15.4.2.6. Ozonolysis 323


15.4.2.7. Organosolv 324


15.4.3. Physicochemical Pre-treatment 325


15.4.3.1. Ammonia Fiber Expansion (AFEX) 325


15.4.3.2. Ammonia Recycled Percolation (ARP) and Soaking in Aqueous Ammonia 325


15.4.3.3. Hot Water Pre-treatment 326


15.4.3.4. Steam Explosion 327


15.4.3.5. SO2-Catalyzed Steam Explosion 328


15.4.3.6. Oxidation 328


15.4.3.7. Wet Oxidation 329


15.4.3.8. SPORL Treatment 329


15.4.3.9. Supercritical Fluid 329


15.4.4. Biological Pre-treatment 330


15.4.4.1. White-Rot Fungi 330


15.4.4.2. Brown-Rot Fungi 331


15.4.4.3. Soft-Rot Fungi 331


15.4.4.4. Bacteria and Actinomycetes 331


15.4.5. Other Pre-treatment Process 331


15.4.5.1. Hydrotrope Pre-treatment 331


15.4.5.2. Photocatalytic Pre-treatment 332


15.5. Case Studies of Biofuels 333


15.5.1. Ethanol production 333


15.5.2. Butanol 335


15.5.3. Biohydrogen 337


15.5.4. Biogas 338


15.6. Conclusion 340


Reference 341


16. Microalgal Biomass as an Alternative Source of Sugars for the Production of Bioethanol 351
Maria Eugenia Sanz Smachetti, Lara Sanchez Rizza, Camila Denise Coronel, Mauro Do Nascimento, and Leonardo Curatti


16.1. Overview 352


16.2. Aquatic Species as Alternative Feedstocks for Low-cost-sugars 353


16.2.1. Seaweed 353


16.2.1.1. Seaweed Biomass 353


16.2.1.2. Seaweed Cultivation 354


16.2.1.3. Seaweed as a Biofuels Feedstock 355


16.2.2. Microalgae 357


16.2.2.1. Microalgae Biomass as a Biofuel Feedstock 358


16.2.2.2. Microalgal Biomass Production Technology 362


16.2.2.3. Microalgae Productivity 364


16.2.2.4. Harvesting and Drying Algal Biomass 365


16.2.2.5. Microalgal Biomass Conversion into Biofuels 367


16.3. Environmental Sustainability of Microlgal-based Biofuels 375


16.4. Prospects for Commercialization of Microalgal-based Bioethanol 376


16.5. Conclusions and Perspectives 377


References 378


17. A Sustainable Process for Nutrient Enriched Fruit Juice Processing: An Enzymatic Venture 387
Debajyoti Kundu, Jagriti Singh, Mohan Das, Akanksha Rastogi, and Rintu Banerjee


17.1. Introduction 388


17.2. Conventional Methods for Juice Processing and Their Drawbacks 389


17.3. Enzyme Technology in Different Step of Juice Processing 390


17.3.1. Peeling and Extraction 391


17.3.2. Clarification 393


17.3.3. Debittering 395


17.4. Conclusion 396


References 396


18. Biotechnological Exploitation of Poly-Lactide Produced from Cost Effective Lactic Acid 401
Mohan Das, Debajyoti Kundu, Akanksha Rastogi, Jagriti Singh, and Rintu Banerjee


18.1. Introduction 402


18.2. Need for Ideal Substrates for Lactic Acid Production 403


18.3. Role of Microbes and Biochemical Pathways in Lactic Acid Production 405


18.4. Purification of Lactic Acid 406


18.5. Methods of Synthesis of PLA 408


18.5.1. Direct poly condensation 408


18.5.2. Ring opening poly condensation 409


18.6. Applications of PLA 411


18.7. Conclusion 413


References 413


19. A New Perspective on Fermented Protein Rich Food and Its Health Benefits 417
Jagriti Singh, Akanksha Rastogi, Debajyoti Kundu, Mohan Das and Rintu Banerjee


19.1. Introduction 418


19.2. Sources of Fermented Protein 420


19.3. Protein in Biological System 420


19.4. Bioabsorbability of Protein 423


19.4.1. Absorption of Peptides and Amino Acids 423


19.5. Fermented Protein-Rich Food Products 424


19.5.1. Soyabean (Gycine max) 424


19.5.2. Distillers DDGS 426


19.5.3. Tempe 426


19.5.4. Red Bean (Phaseolus vulgaris) 427


19.5.5. Fermented Peanuts (Arachis hypogae) 428


19.5.6. Sufu 428


19.5.7. Kefir 429


19.5.8. Fermented Whey Beverage 430


19.5.9. Salami 431


19.6. Conclusion 431


References 432


20. An Understanding of Bacterial Cellulose and Its Potential Impact on Industrial Applications 437
Akanksha Rastogi, Jagriti Singh, Mohan Das, Debajyoti Kundu, and Rintu Banerjee


20.1. Introduction 438


20.2. Cultivation Conditions for Production of Bacterial Cellulose 439


20.2.1. Fermentation Process 439


20.2.2. Composition of Culture Media 440


20.2.2.1. Carbon Source 440


20.2.2.2. pH for Bacterial Cellulose Production 440


20.2.2.3. Temperature for BC Production 441


20.2.2.4. Dissolved Oxygen on BC Production 441


20.3. Bioreactor System for Bacterial Cellulose 441


20.3.1. Stirred Tank Reactor 442


20.3.2. Trickling Bed Reactor 442


20.3.3. Airlift Bioreactors 442


20.3.4. Aerosol Bioreactor 443


20.3.5. Rotary Bioreactor 443


20.3.6. Horizontal Lift Reactor 444


20.3.7. Other Type of Bioreactor 444


20.4. Plant Cellulose vs. Bacterial Cellulose 444


20.4.1. Morphology 446


20.4.2. Crystallinity 447


20.4.3. Degree of Polymerization 447


20.4.4. Thermal Properties 447


20.4.5. Mechanical Properties 447


20.4.6. Water Absorption Properties 448


20.4.7. Optical Properties 448


20.5. Compositional View of Bacterial Cellulose 448


20.6. Molecular biology of Bacterial Cellulose 449


20.7. Importance of Genetically Modified Bacteria in Bacterial Cellulose Production 450


20.8. Applications of Bacterial Cellulose in Different Industrial Sector 451


20.8.1. Skin and Wound Healing 451


20.8.2. Bacterial Cellulose Composites 452


20.8.3. Artificial Blood Vessels 452


20.8.4. In Paper Industry 452


20.8.5. In Food Industry 453


20.8.6. Applications of Bacterial Cellulose in Other Fields 453


20.9. Conclusion 454


References 454


Index 000

Polecamy również książki

Strony www Białystok Warszawa
801 777 223