Księgarnia naukowa
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
An Introduction to Sonar Systems Engineering

An Introduction to Sonar Systems Engineering

Autorzy
Wydawnictwo Taylor & Francis Inc
Data wydania 21/12/2016
Liczba stron 676
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Literatura popularna
ISBN 9781498778725
Kategorie Mechanika -fale (wibracje i akustyka), Inżynieria komunikacyjna i telekomunikacyjna, Sonar
809.76 PLN (z VAT)
$220.93 / €190.99 / £168.00 /
Produkt na zamówienie
Przesyłka w 3-4 tygodnie
Ilość
Do schowka

Opis książki

Written in tutorial style, this textbook discusses the fundamental topics of modern day Sonar Systems Engineering for the analysis and design of both active and passive sonar systems. Included are basic signal design for active sonar systems and understanding underwater acoustic communication signals. Mathematical theory is provided, plus practical design and analysis equations for both passive and active sonar systems. Practical homework problems are included at the end of each chapter and a solutions manual and lecture slides for each chapter are available for adopting professors.

An Introduction to Sonar Systems Engineering

Spis treści

Preface xiii


1 Complex Aperture Theory - Volume Apertures - General Results 1


1.1 Coupling Transmitted and Received Electrical Signals


to the Fluid Medium 1


1.1.1 Transmit Coupling Equation 1


1.1.2 Receive Coupling Equation 4


1.2 The Near-Field Beam Pattern of a Volume Aperture 6


1.2.1 Transmit Aperture 6


1.2.2 Receive Aperture 21


1.3 The Far-Field Beam Pattern of a Volume Aperture 28


1.3.1 Transmit Aperture 28


1.3.2 Receive Aperture 33


Problems 35


Appendix 1A 36


Appendix 1B Important Functions and their Units at a Transmit


and Receive Volume Aperture 39


2 Complex Aperture Theory - Linear Apertures 41


2.1 The Far-Field Beam Pattern of a Linear Aperture 41


2.2 Amplitude Windows and Corresponding Far-Field Beam Patterns 44


2.2.1 The Rectangular Amplitude Window 45


2.2.2 The Triangular Amplitude Window 48


2.2.3 The Cosine Amplitude Window 52


2.2.4 The Hanning, Hamming, and Blackman Amplitude


Windows 57


2.3 Beamwidth 63


2.4 Beam Steering 70


2.5 Beamwidth at an Arbitrary Beam-Steer Angle 73


2.6 The Near-Field Beam Pattern of a Linear Aperture 81


2.6.1 Aperture Focusing 84


2.6.2 Beam Steering and Aperture Focusing 85


Problems 86


Appendix 2A Transmitter and Receiver Sensitivity Functions


of a Continuous Line Transducer 90


Appendix 2B Radiation from a Linear Aperture 92


Appendix 2C Symmetry Properties and Far-Field Beam Patterns 98


Appendix 2D Computing the Normalization Factor 100


Appendix 2E Summary of One-Dimensional Spatial Fourier


Transforms 102

3 Complex Aperture Theory - Planar Apertures 103


3.1 The Far-Field Beam Pattern of a Planar Aperture 103


3.2 The Far-Field Beam Pattern of a Rectangular Piston 106


3.3 The Far-Field Beam Pattern of a Circular Piston 111


3.4 Beam Steering 120


3.5 The Near-Field Beam Pattern of a Planar Aperture 122


3.5.1 Beam Steering and Aperture Focusing 125


Problems 126


Appendix 3A Transmitter and Receiver Sensitivity Functions


of a Planar Transducer 129


Appendix 3B Radiation from a Planar Aperture 132


Appendix 3C Computing the Normalization Factor 138


4 Time-Average Radiated Acoustic Power 141


4.1 Directivity and Directivity Index 141


4.2 The Source Level of a Directional Sound-Source 148


Problems 154


5 Side-Looking Sonar 157


5.1 Swath Width 157


5.2 Cross-Track (Slant-Range) Resolution 163


5.3 Along-Track (Azimuthal) Resolution 165


5.4 Slant-Range Ambiguity 169


5.5 Azimuthal Ambiguity 172


5.6 A Rectangular-Piston Model for a Side-Looking Sonar 175


5.7 Design and Analysis of a Side-Looking Sonar Mission 176


5.7.1 Deep Water 176


5.7.2 Shallow Water 183


Problems 188


6 Array Theory - Linear Arrays 191


6.1 The Far-Field Beam Pattern of a Linear Array 191


6.1.1 Even Number of Elements 192


6.1.2 Odd Number of Elements 207


6.2 Common Amplitude Weights and Corresponding


Far-Field Beam Patterns 215


6.3 Dolph-Chebyshev Amplitude Weights 222


6.4 The Phased Array - Beam Steering 231


6.5 Far-Field Beam Patterns and the Spatial Discrete Fourier


Transform 235


6.5.1 Grating Lobes 239


6.6 The Near-Field Beam Pattern of a Linear Array 247


6.6.1 Beam Steering and Array Focusing 250


Problems 257

Appendix 6A Normalization Factor for the Array Factor


for N Even and Odd 261


Appendix 6B Transmitter and Receiver Sensitivity Functions


of an Omnidirectional Point-Element 264


Appendix 6C Radiation from an Omnidirectional Point-Source 266


Appendix 6D One-Dimensional Spatial FIR Filters 271


Appendix 6E Far-Field Beam Patterns and the Spatial Discrete


Fourier Transform for N Even 273


7 Array Gain 277


7.1 General Definition of Array Gain for a Linear Array 277


7.2 Acoustic Field Radiated by a Target 281


7.3 Total Output Signal from a Linear Array due to the Target 287


7.3.1 FFT Beamforming for Linear Arrays 298


7.4 Total Output Signal from a Linear Array due to


Ambient Noise and Receiver Noise 304


7.5 Evaluation of the Equation for Array Gain 307


Problems 312


Appendix 7A Attenuation Coefficient of Seawater 313


Appendix 7B Fourier Transform, Fourier Series Coefficients,


Time-Average Power, and Power Spectrum


via the DFT 315


8 Array Theory - Planar Arrays 319


8.1 The Far-Field Beam Pattern of a Planar Array 319


8.2 The Phased Array - Beam Steering 347


8.3 Far-Field Beam Patterns and the Two-Dimensional


Spatial Discrete Fourier Transform 357


8.4 The Near-Field Beam Pattern of a Planar Array 362


8.4.1 Beam Steering and Array Focusing 364


8.5 FFT Beamforming for Planar Arrays 366


Problems 375


Appendix 8A Two-Dimensional Spatial FIR Filters 378


Appendix 8B Normalization Factor for the Array Factor 379


9 Array Theory - Volume Arrays 381


9.1 The Far-Field Beam Pattern of a Cylindrical Array 381


9.1.1 The Phased Array - Beam Steering 387


9.2 The Far-Field Beam Pattern of a Spherical Array 400


9.2.1 The Phased Array - Beam Steering 404


Problems 405


10 Bistatic Scattering 409


10.1 Target Strength 409

10.2 Computing the Scattering Function of an Object 421


10.3 Direct Path 424


10.4 Sonar Equations 426


10.4.1 Scattered Path 426


10.4.2 Direct Path 437


10.5 Broadband Solutions 442


10.5.1 Scattered Path 442


10.5.2 Direct Path 446


10.6 A Statistical Model of the Scattering Function 448


10.7 Moving Platforms 456


10.7.1 Scattered Path 456


10.7.2 Direct Path 470


Problems 475


Appendix 10A Radiation from a Time-Harmonic, Omnidirectional


Point-Source 476


Appendix 10B Gradient of the Time-Independent, Free-Space,


Green's Function 483


Appendix 10C 485


11 Real Bandpass Signals and Complex Envelopes 487


11.1 Definitions and Basic Relationships 487


11.1.1 Signal Energy and Time-Average Power 492


11.1.2 The Power Spectrum 495


11.1.3 Orthogonality Relationships 497


11.2 The Complex Envelope of an Amplitude-and-Angle-Modulated


Carrier 497


11.2.1 The Bandpass Sampling Theorem 503


11.2.2 Orthogonality Relationships 504


11.3 The Quadrature Demodulator 506


Problems 511


12 Target Detection in the Presence of Reverberation and Noise 515


12.1 A Binary Hypothesis-Testing Problem 515


12.2 The Signal-to-Interference Ratio 520


12.3 Probability of False Alarm and Decision Threshold 527


12.4 Probability of Detection and Receiver Operating Characteristic


Curves 538


Problems 553


Appendix 12A Mathematical Models of the Target Return


and Reverberation Return 554


Appendix 12B Derivation of the Denominator of the


Signal-to-Interference Ratio 565


Appendix 12C Table 12C-1 Marcum Q-Function Q(a, b) 575

Appendix 12D How to Compute Values for 0 1 577


Appendix 12E 578


13 The Auto-Ambiguity Function and Signal Design 581


13.1 The Rectangular-Envelope CW Pulse 581


13.2 The Rectangular-Envelope LFM Pulse 597


Problems 612


14 Underwater Acoustic Communication Signals 615


14.1 M-ary Frequency-Shift Keying 615


14.1.1 Time-Domain Description 615


14.1.2 Frequency Spectrum and Bandwidth 617


14.1.3 Signal Energy and Time-Average Power 619


14.1.4 Orthogonality Conditions 622


14.1.5 Demodulation 623


14.2 M-ary Quadrature Amplitude Modulation 631


14.2.1 Time-Domain Description 631


14.2.2 Frequency Spectrum and Bandwidth 639


14.2.3 Signal Energy and Time-Average Power 641


14.2.4 Demodulation 648


14.3 Orthogonal Frequency-Division Multiplexing 650


14.3.1 Time-Domain Description 650


14.3.2 Frequency Spectrum and Bandwidth 651


14.3.3 Signal Energy and Time-Average Power 655


14.3.4 Demodulation 658


Problems 664


Bibliography 667


Index 671

Polecamy również książki

801 777 223