English Polski
Dostęp on-line


0.00 PLN
Schowek (0) 
Schowek jest pusty
Effective Statistical Learning Methods for Actuaries II

Effective Statistical Learning Methods for Actuaries II

Wydawnictwo Springer Nature Customer Service Center GmbH
Data wydania 01/11/2020
Wydanie Pierwsze
Liczba stron 228
Forma publikacji książka w miękkiej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9783030575557
Kategorie Ubezpieczenia, Prawdopodobieństwo i statystyka, modelowanie matematyczne
Zapytaj o ten produkt
Do schowka

Opis książki

This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.

Effective Statistical Learning Methods for Actuaries II

Spis treści

Chapter 1: Introductio.- Chapter 2 : Performance Evaluation.- Chapter 3 Regression Trees.- Chapter 4 Bagging Trees and Random Forests.- Chapter 5 Boosting Trees.- Chapter 6 Other Measures for Model Comparison.

Polecamy również książki

Strony www Białystok Warszawa
801 777 223