ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Lie Groups

Lie Groups

Autorzy
Wydawnictwo Springer Nature Customer Service Center GmbH
Data wydania 01/02/2021
Wydanie Pierwsze
Liczba stron 371
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9783030618230
Kategorie Algebra, Grupy i teoria grup, Geometria algebraiczna
Zapytaj o ten produkt
E-mail
Pytanie
 
Do schowka

Opis książki

This textbook provides an essential introduction to Lie groups, presenting the theory from its fundamental principles. Lie groups are a special class of groups that are studied using differential and integral calculus methods. As a mathematical structure, a Lie group combines the algebraic group structure and the differentiable variety structure. Studies of such groups began around 1870 as groups of symmetries of differential equations and the various geometries that had emerged. Since that time, there have been major advances in Lie theory, with ramifications for diverse areas of mathematics and its applications. Each chapter of the book begins with a general, straightforward introduction to the concepts covered; then the formal definitions are presented; and end-of-chapter exercises help to check and reinforce comprehension. Graduate and advanced undergraduate students alike will find in this book a solid yet approachable guide that will help them continue their studies with confidence.

Lie Groups

Spis treści

Preface.- Introduction.- Part I: Topological Groups.- Topological Groups.- Haar Measure.- Representations of Compact Groups.- Part II: Lie Groups and Algebras.- Lie Groups and Lie Algebras.- Lie Subgroups.- Homomorphism and Coverings.- Series Expansions.- Part III: Lie Algebras and Simply Connected Groups.- The Affine Group and Semi-direct Products.- Solvable and Nilpotent Groups.- Compact Groups.- Noncompact Semi-simple Groups.- Part IV: Transformation Groups.- Lie Group Actions.- Invariant Geometry.- Appendices.

Polecamy również książki

Strony www Białystok Warszawa
801 777 223