English Polski
Dostęp on-line


0.00 PLN
Schowek (0) 
Schowek jest pusty
Introduction to Calculus and Classical Analysis

Introduction to Calculus and Classical Analysis

Wydawnictwo Springer International Publishing AG
Data wydania 17/02/2016
Wydanie Czwarte
Liczba stron 427
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
ISBN 9783319283999
Kategorie Rachunek matematyczny i analizy matematyczne, Kombinatoryka i teoria wykresów
Zastępuje 9781441994875
Zapytaj o ten produkt
Do schowka

Opis książki

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.

Introduction to Calculus and Classical Analysis

Spis treści

Preface.- The Set of Real Numbers.- Sets and Mappings.- The Set R.- The Subset N and the Principle of Induction.- The Completeness Property.- Sequences and Limits.- Nonnegative Series and Decimal Expansions.- Signed Series and Cauchy Sequences.- Continuity.- Compactness.- Continuous Limits.- Continuous Functions.- Differentiation.- Derivatives.- Mapping Properties.- Graphing Techniques.- Power Series.- Taylor Series.- Trigonometry.- Primitives.- Integration.- The Cantor Set.- Area.- The Integral.- The Fundamental Theorems of Calculus.- The Method of Exhaustion.- Applications.- Euler's Gamma Function.- The Number .- Gauss' Arithmetic-Geometric Mean (AGM).- The Gaussian Integral.- Stirling's Approximation.- Infinite Products.- Jacobi's Theta Functions.- Riemann's Zeta Function.- The Euler-Maclaurin Formula.- Generalizations.- Measurable Functions and Linearity.- Limit Theorems.- The Fundamental Theorems of Calculus.- The Sunrise Lemma.- Absolute Continuity.- The Lebesgue Differentiation Theorem.- Solutions.- References.- Index.

Polecamy również książki

Strony www Białystok Warszawa
801 777 223