ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Electron Nano-Imaging: Basics of Imaging and Diffraction for TEM and STEM

Electron Nano-Imaging: Basics of Imaging and Diffraction for TEM and STEM

Autorzy
Wydawnictwo Springer, Berlin
Data wydania
Liczba stron 333
Forma publikacji książka w twardej oprawie
Język angielski
ISBN 9784431565000
Kategorie Testowanie materiałów
Zapytaj o ten produkt
E-mail
Pytanie
 
Do schowka

Opis książki

In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today's graduate students and professionals just starting their careers.

Electron Nano-Imaging: Basics of Imaging and Diffraction for TEM and STEM

Spis treści

Seeing nanometer-sized world.- Structure and imaging of a transmission electron microscope (TEM).- Basic theories of TEM imaging.- Resolution and image contrast of a transmission electron microscope (TEM).- What is high-resolution transmission electron microscopy ?.- Lattice images and structure images.- Imaging theory of high-resolution TEM and image simulation.- Advanced transmission electron microscopy.- What is scanning transmission electron microscopy (STEM)?.- Imaging of scanning transmission electron microscopy (STEM).- Image contrast and its formation mechanism in STEM.- Imaging theory for STEM.- Future prospects and possibility of TEM and STEM.- Concluding remarks.- Introduction of Fourier transforms for TEM and STEM.- Imaging by using a convex lens: Convex lens as phase shifter.- Contrast transfer function of a transmission electron microscope: Key term for understanding of phase contrast in HRTEM.- Complex-valued expression of aberrations of a round lens.- Cowley's theory for TEM and STEM imaging.- Introduction to the imaging theory for TEM including non-linear terms.- What are image processing methods?.- Elemental analysis by electron microscopes: Analysis using an electron probe.- Electron beam damage to specimens.- Scattering of electrons by an atom: Fundamental process for visualization of a single atom by TEM.- Electron diffraction and convergent beam electron diffraction (CBED): Basis for formation of lattice fringes in TEM and image intensity of STEM.- Bethe's method for dynamical electron diffraction: Basic theory of electron diffraction in thicker crystals.- Column approximation and Howie-Whelan's method for dynamical electron diffraction: Theory for observation of lattice defects.- Van-Dyck's method for dynamical electron diffraction and imaging: Basis of atomic column imaging.- Eikonal theory for scattering of electrons by a potential.- Debye-Waller factor and thermal diffuse scattering (TDS).- Relativistic effects to diffraction and imaging by a transmission electron microscope: Basic theories for high-voltage electron microscopy.


Polecamy również książki

Strony www Białystok Warszawa
801 777 223