ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Applied Superconductivity: Handbook on Devices and Applications

Applied Superconductivity: Handbook on Devices and Applications

Wydawnictwo Wiley-Vch
Data wydania 2015
Liczba stron 1336
Forma publikacji książka w twardej oprawie
Język angielski
ISBN 9783527412099
Kategorie Urządzenia i materiały elektroniczne
Zapytaj o ten produkt
E-mail
Pytanie
 
Do schowka

Opis książki

This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, last but not least, superconductor digital electronics is addressed, leading readers from fundamentals to quantum computing and new devices.

Applied Superconductivity: Handbook on Devices and Applications

Spis treści

1. Fundamentals1.1 Superconductivity1.1.1 Basic Properties and Parameters of Superconductors (Reinhold Kleiner)1.1.2 Review on Superconducting Materials (Roland Hott, Reinhold Kleiner, Thomas Wolf, Gertrud Zwicknagel)1.2 Main Related Effects1.2.1 Proximity Effect (Mikhail Belogolovskii)1.2.2 Tunneling and Superconductivity (Steven Ruggiero)1.2.3 Flux Pinning (Stuart Wimbush)1.2.4 AC Losses and Numerical Modeling of Superconductors (Francesco Grilli, Frederic Sirois)2. Superconducting Materials2.1 Low Temperature Superconductors2.1.1 Metals and Alloys (Helmut Krauth, Klaus Schlenga)2.1.2 Magnesiumdiborid (Davide Nardelli, Ilaria Pallecchi, Matteo Tropeano)2.2 High Temperature Superconductors2.2.1 Cuprate High Temperature Superconductors (Roland Hott, Thomas Wolf)2.2.2 Iron-based Superconductors (Ilaria Pallecchi, Marina Putti)3. Technology, Preparation and Characterization3.1 Bulk Materials3.1.1 Preparation of bulk and textured Superconductors (Frank N. Werfel)3.1.2 Preparation of Single Crystals (Andreas Erb)3.1.3 Properties of Bulk Materials (Günter Fuchs, Gernot Krabbes,Wolf-Rüdiger Canders)3.2 Thin Films and Multilayers3.2.1 Thin Film Deposition (Roger Wördenweber)3.3 Josephson Junctions and Circuits3.3.1 LTS Josephson Junctions (Hans-Georg Meyer, Ludwig Fritzsch, Solveig Anders, Matthias Schmelz, Jürgen Kunert, Gregor Oelsner)3.3.2 HTS Josephson Junctions (Keiichi Tanabe)3.4 Wires and Tapes3.4.1 Powder-in tube Superconducting Wires (Tengming Shen, Jianyi Jiang, Eric Hellstrom)3.4.2 YBCO Coated Conductors (Mariappan Parans Paranthaman, Tolga Aytug, Liliana Stan, Quanxi Jia, Claudia Cantoni)3.5 Cooling3.5.1 Fluid Cooling (Luca Bottura, Cesar Luongo)3.5.2 Cryocoolers (Gunter Kaiser, Gunar Schröder)3.5.3 Cryogen-free Cooling Systems (Gunter Kaiser, Andreas Kade)4. Superconducting Magnets4.1 Bulk Superconducting Magnets for Bearings and Levitation (John R. Hull)4.1.1 Introduction4.1.2 Understanding levitation with bulk superconductors4.1.3 Rotational loss4.1.4 A rotator dynamic issue4.1.5 Practical bearing consideration4.1.6 Applications4.2 Fundamentals of Superconducting Electromagnets (Martin N. Wilson)4.2.1 Windings to produce different field shapes4.2.2 Current supply4.2.3 Load lines, degradation and training4.2.4 Cryogenic stabilization4.2.5 Mechanical disturbances and minimum quench energy4.2.6 Screening currents and the critical state model4.2.7 Magnetization and flux jumping4.2.8 Filamentary wires and cables4.2.9 AC losses4.2.10 Quenching and protection4.3 Magnets for Particle Accelerators and Storage Rings (Lucio Rossi, Luca Bottura)4.3.1 Introduction4.3.2 Accelerator, colliders and role of superconducting magnets4.3.3 Magnetic design4.3.4 Mechanical design4.3.5 Margins, stability, training and protection4.3.6 Field quality4.3.7 Fast-cycled synchrotrons4.4 Superconducting Detector Magnets for particle physics (Michael Green)4.4.1 The development of detector solenoids4.4.2 LHC detector magnets for the ATLAS, CMC and ALICE experiments4.4.3 The future of detector magnets for particle physics4.4.4 The defining parameters for thin solenoids4.4.5 Thin detector solenoids design criteria4.4.6 Magnet power supply and coil quench protection4.4.7 Design criteria for the ends of a detector solenoid4.4.8 Cryogenic cooling of a detector magnet4.5 Magnets for NMR and MRI (Yukikazu Iwasa, Seungyong Hahn)4.5.1 Introduction to NMR and MRI Magnets4.5.2 Specific Design Issues for NMR & MRI Magnets4.5.3 Status (2013) of NMR and MRI Magnets4.5.4 HTS Applications to NMR and MRI Magnets4.5.5 Conclusions4.6 Superconducting Magnets for Fusion (Jean-Luc Duchateau)4.6.1 Introduction to fusion and superconductivity4.6.2 ITER4.6.3 Cable in Conduit conductors (CICC)4.6.4 Quench protection in fusion magnets4.6.5 Prospective about future fusion reactors Demo4.6.6. Conclusion4.7 Magnets for Separation, Crystal Growth and Inductive Melting (Swarn Kalsi)4.7.1 Introduct

Polecamy również książki

Strony www Białystok Warszawa
801 777 223