ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Biorefinery Production Technologies for Chemicals and Energy

Biorefinery Production Technologies for Chemicals and Energy

Wydawnictwo John Wiley & Sons
Data wydania 01/11/2020
Wydanie Pierwsze
Liczba stron 416
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9781119591429
Kategorie Inżynieria mechaniczna i materiałowa
945.00 PLN (z VAT)
$212.57 / €202.61 / £175.88 /
Produkt dostępny
Dostawa 7 dni
Ilość
Do schowka

Opis książki

The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals.


The first part of the book presents the fundamentals of the biorefinery concept. The second part describes the biorefinery approach for production of several industrially important chemicals from waste biomass and agro residues. These chemicals include industrially important C4. C5 and C6 chemicals, propylene glycol, glycerol byproducts, dyes and inks etc. Each and every chemical has its own industrial value and the book describes the production processes and strategies at the industrial level. The final part of the book describes the various biorefinery approaches and economic analysis for the different types of biofuel production.

Biorefinery Production Technologies for Chemicals and Energy

Spis treści

Preface xv





Part 1: Biorefinery Basic Principles 1





1 Principles of Sustainable Biorefinery 3

Samakshi Verma and Arindam Kuila





1.1 Introduction 3





1.2 Biorefinery 5





1.3 Conversion Technologies of Biorefineries 6





1.4 Some Outlooks Toward Biorefinery Technologies 7





1.5 Principles of Sustainable Biorefineries 9





1.6 Advantages of Biorefineries 10





1.7 Classification of Biorefineries 10





1.8 Conclusion 12





References 12





2 Sustainable Biorefinery Concept for Industrial Bioprocessing 15

Mohd Asyraf Kassim, Tan Kean Meng, Noor Aziah Serri, Siti Baidurah Yusoff, Nur Artikah Muhammad Shahrin, Khok Yong Seng, Mohamad Hafizi Abu Bakar and Lee Chee Keong





2.1 Sustainable Industrial Bioprocess 15





2.2 Biorefinery 16





2.2.1 Starch Biorefinery 18





2.2.2 Lignocellulosic Biorefinery 19





2.3 Microalgal Biorefinery 22





2.3.1 Upstream Processing 23





2.3.2 Downstream Processing 24





2.3.2.1 Lipid-Extracted Microalgae 24





2.4 Value Added Products 27





2.4.1 Biofuel 27





2.4.1.1 Bioethanol 30





2.4.1.2 Biobutanol 31





2.4.1.3 Biodiesel 34





2.4.1.4 Short Alkane 36





2.4.2 Polyhydroxyalkanoates (PHA) 36





2.4.3 Bioactive Compounds From Food Waste Residues 39





2.5 Novel Immobilize Carrier From Biowaste 42





2.5.1 Waste Cassava Tuber Fiber 42





2.5.2 Corn Silk 43





2.5.3 Sweet Sorghum Bagasse 43





2.5.4 Coconut Shell Activated Carbon 44





2.5.5 Sugar Beet Pulp 44





2.5.6 Eggshells 45





2.6 Conclusion 45





References 46





3 Biomass Resources for Biorefinery Application 55

Varsha Upadhayay, Ritika Joshi and Arindam Kuila





3.1 Introduction 55





3.2 Concept of Biorefinery 56





3.3 Biomass Feedstocks 57





3.3.1 Types of Biomass Feedstocks 57





3.3.1.1 Biomass of Sugar Industry 57





3.3.1.2 Biomass Waste 58





3.3.1.3 Sugar and Starch Biomass 59





3.3.1.4 Algal Biomass 59





3.3.1.5 Lignocelluloses Feedstock 59





3.3.1.6 Oil Crops for Biodiesel 60





3.4 Processes 60





3.4.1 Thermo Chemical Processes 62





3.4.2 Biochemical Processes 63





3.4.3 Biobased Products and the Biorefinery Concept 64





3.5 Conclusions 64





References 65





4 Evaluation of the Refinery Efficiency and Indicators for Sustainability and Economic Performance 67

Rituparna Saha and Mainak Mukhopadhyay





4.1 Introduction 67





4.2 Biofuels and Biorefineries: Sustainability Development and Economic Performance 69





4.3 Future Developments Required for Building a Sustainable Biorefinery System 72





4.4 Conclusion 72





References 73





5 Biorefinery: A Future Key of Potential Energy 77

Anirudha Paul, Sampad Ghosh, Saptarshi Konar and Anirban Ray





5.1 Introduction 77





5.2 Biorefinery: Definitions and Descriptions 78





5.3 Modus Operandi of Different Biorefineries 79





5.3.1 Thermochemical Processing 79





5.3.2 Mechanical Processing 79





5.3.3 Biochemical Processing 79





5.3.4 Chemical Processing 79





5.4 Types of Biorefineries 80





5.4.1 Lignocellulose Feedstock Biorefinery 80





5.4.2 Syngas Platform Biorefinery 81





5.4.3 Marine Biorefinery 81





5.4.4 Oleochemical Biorefinery 81





5.4.5 Green Biorefinery 81





5.4.6 Whole Crop Biorefinery 82





5.5 Some Biorefinery Industries 82





5.5.1 European Biorefinery Companies 82





5.5.2 Biorefinery Companies in USA 82





5.5.3 Biorefinery Companies in Asia 83





5.6 Conclusion and Future of Biorefinery 83





References 84





Part 2: Biorefinery for Production of Chemicals 89





6 Biorefinery for Innovative Production of Bioactive Compounds from Vegetable Biomass 91

Massimo Lucarini, Alessandra Durazzo, Ginevra Lombardi-Boccia, Annalisa Romani, Gianni Sagratini, Noemi Bevilacqua, Francesca Ieri, Pamela Vignolini, Margherita Campo and Francesca Cecchini





6.1 Introduction 91





6.2 Waste From Grape and During Vinification: Bioactive Compounds and Innovative Production 92





6.2.1 Grape 92





6.2.2 Polyphenols 92





6.2.3 Antioxidant Activity and Health Properties of Grape 94





6.2.4 Winemaking Technologies 96





6.2.5 Winemaking By-Products 96





6.2.6 Extraction Technologies 97





6.3 Waste from Olive and During Oil Production: Bioactive Compounds and Innovative Process 99





6.3.1 Olive Oil Quality, its Components, and Beneficial Properties 100





6.3.2 Olive Oil By-Products 108





6.3.3 Olive Oil, Tradition, Biodiversity, Territory, and Sustainability 113





6.4 Bioactive Compounds in Legume Residues 115





6.4.1 Polyphenols 116





6.4.2 Phytosterols and Squalene 116





6.4.3 Dietary Fiber and Resistant Starch 117





6.4.4 Soyasaponins 117





6.4.5 Bioactive Peptides 118





References 120





7 Prospects of Bacterial Tannase Catalyzed Biotransformation of Agro and Industrial Tannin Waste to High Value Gallic Acid 129

Sunny Dhiman and Gunjan Mukherjee





7.1 Introduction 129





7.2 Bacterial Tannase Producers 131





7.3 Bacterial Tannase Production 131





7.4 Hydrolyzable Tannins: A Substrate for Gallic Acid Production 133





7.5 Tannins as Waste 133





7.5.1 Agro-Waste 133





7.5.2 Industrial Waste 134





7.6 Bacterial Biotransformation of Tannins 134





7.7 Applications of Gallic Acid 136





7.7.1 Therapeutic Applications 136





7.7.2 Industrial Applications 137





7.8 Conclusions 138





References 138





8 Biorefinery Approach for Production of Industrially Important C4, C5, and C6 Chemicals 145

Shritoma Sengupta and Aparna Sen





8.1 Introduction 145





8.2 Role of Biorefinery in Industrially Important Chemical Production 147





8.3 Production of C4 Chemicals 149





8.4 Production of C5 Chemicals 152





8.5 Production of C6 Chemicals 155





8.6 Concluding Remarks 157





References 158





9 Value-Added Products from Guava Waste by Biorefinery Approach 163

Pranav D. Pathak, Sachin A. Mandavgane and Bhaskar D. Kulkarni





9.1 Introduction 163





9.2 Physicochemical Characterization 164





9.3 Valorization of GW 165





9.3.1 Medicinal Uses 165





9.3.1.1 GL, GB, and GF in Medicines 166





9.3.1.2 GP in Medicines 169





9.3.2 Extraction of Chemicals 171





9.3.2.1 Extraction from GL 171





9.3.2.2 Extraction from GP 176





9.3.2.3 Extraction from GS 176





9.3.3 Food Supplements 177





9.3.4 Extraction of Pectin 178





9.3.5 Animal Feed 178





9.3.6 As Insecticide 179





9.3.7 Synthesis of Nanomaterials 180





9.3.8 In Fermentations 180





9.3.9 As a Water Treatment Agent 181





9.3.10 Production of Enzymes 181





9.4 Sustainability of Value-Added Products From GW 181





9.5 Conclusion 189





References 189





10 Case-Studies Towards Sustainable Production of Value-Added Compounds in Agro-Industrial Wastes 197

Massimo Lucarini, Alessandra Durazzo, Ginevra Lombardi-Boccia, Annalisa Romani, Gianni Sagratini, Noemi Bevilacqua, Francesca Ieri, Pamela Vignolini, Margherita Campo and Francesca Cecchini





10.1 Introduction 197





10.2 Experimental Pilot Plant 199





10.2.1 Chestnut 199





10.2.2 Soy 204





10.2.3 Olive Oil By-Products Case Studies 213





10.2.3.1 Olive Oil Wastewater 213





10.2.3.2 Olea europaea L. leaves 214





References 216





11 Biorefining of Lignocellulosics for Production of Industrial Excipients of Varied Functionalities 221

UpadrastaLakshmishri Roy, DebabrataBera, Sreemoyee Chakraborty and Ronit Saha





11.1 Introduction 221





11.2 Structure and Composition 222





11.3 Lignocellulosic Residues: A Bioreserve for Fermentable Sugars and Polyphenols 222





11.3.1 Biorefining of Lignocellulosic Residues 223





11.4 Pre-Treatment of Lignocellulosics 224





11.4.1 Physico-Chemical Process 224





11.4.1.1 Acid Refining 224





11.4.1.2 Alcohol Refining 225





11.4.1.3 Alkali Refining 225





11.4.2 Thermo-Physical Process 226





11.4.2.1 Steam Explosion Process 226





11.4.2.2 Supercritical and Subcritical Water Treatment 226





11.4.2.3 Hot-Compressed Water Treatment 227





11.4.3 Biological Process 227





11.4.3.1 Lignin Degrading Enzymes 227





11.4.3.2 Cellulose Degrading Enzymes 229





11.4.3.3 Hemicellulose Degrading Enzymes 229





11.4.4 Phenols as By-Products of Lignocellulosic Pre-Treatment Process 230





11.5 Methods of Extraction of Polyphenols From Lignocellulosic Biomass 231





11.5.1 Solvent Affiliated Extraction 231





11.5.2 Enzyme Affiliated Extraction 231





11.5.3 Advanced Technological Methods Adopted for Recovery of Phenolics: (Pulsed-Electric-Field Pre-Treatment) 232





11.5.4 Catalytic Microwave Pyrolysis 233





11.5.5 Multifaceted Applications of Phenolics 233





11.6 Conclusion 235





References 235





12 Bioactive Compounds Production from Vegetable Biomass: A Biorefinery Approach 241

Shritoma Sengupta, Debalina Bhattacharya and Mainak Mukhopadhyay





12.1 Introduction 241





12.2 Production of Bioactive Compounds 243





12.3 Bioactive Compounds From Vegetable Biomass 246





12.4 Role of Biorefinery in Production of Bioactive Compounds 248





12.5 Concluding Remarks 252





References 253





Part 3: Biorefinery for Production of Alternative Fuel and Energy 259





13 Potential Raw Materials and Production Technologies for Biorefineries 261

Shilpi Bansal, Lokesh Kumar Narnoliya and Ankit Sonthalia





13.1 Introduction 261





13.2 Bioresources 264





13.2.1 First-Generation Feedstock 264





13.2.2 Second-Generation Feedstock 264





13.2.3 Third-Generation Feedstock 270





13.3 Chemicals Produced from Biomass 270





13.3.1 Ethylene 270





13.3.2 Propylene 273





13.3.3 Propylene Glycol 273





13.3.4 Butadiene 274





13.3.5 2,3-Butanediol and 2-Butanone Methyl Ethyl Ketone (MEK) 274





13.3.6 Acrylic Acid 274





13.3.7 Aromatic Compounds 275





13.4 Production Technologies 275





13.4.1 Pre-Treatment 275





13.4.2 Hydrolysis 276





13.4.3 Fermentation 277





13.4.4 Pyrolysis 278





13.4.5 Gasification 278





13.4.6 Supercritical Water 279





13.4.7 Algae Biomass 280





13.5 Conclusion 280





References 281





14 Sustainable Production of Biofuels Through Synthetic Biology Approach 289

Dulam Sandhya, Phanikanth Jogam, Lokesh Kumar Narnoliya, Archana Srivastava and Jyoti Singh Jadaun





14.1 Introduction 289





14.2 Types of Biofuel 291





14.2.1 First-Generation Biofuels (Conventional Biofuels) 291





14.2.1.1 Biogas 291





14.2.1.2 Biodiesel and Bioethanol 291





14.2.2 Second-Generation Biofuels 292





14.2.2.1 Cellulosic Ethanol 293





14.2.2.2 Biomethanol 293





14.2.2.3 Dimethylformamide 293





14.2.3 Third-Generation Biofuels 293





14.2.4 Fourth-Generation Biofuels 293





14.2.5 Advantages of Biofuels 294





14.2.6 Disadvantages of Biofuels 294





14.3 Sources of Biofuel 294





14.3.1 Bacterial Source 294





14.3.2 Algal Source 296





14.3.3 Fungal Source 296





14.3.4 Plant Source 297





14.3.4.1 Plant Materials Utilized for the Production of Biofuels 298





14.3.5 Animal Source 299





14.4 Possible Routes of Biofuel Production Through Synthetic Biology 299





14.4.1 Metabolic Engineering 299





14.4.2 Tissue Culture/Genetic Engineering 300





14.4.3 CRISPR-Cas 300





14.5 Synthetic Biology and Its Application for Biofuels Production 301





14.5.1 Case Study 1: Production of Isobutanol by Engineered Saccharomyces cerevisiae 301





14.5.2 Case Study 2: Generation of Biofuel From Ionic Liquid Pretreated Plant Biomass Using Engineered E. coli 302





14.5.3 Case Study 3: CRISPRi-Mediated Metabolic Pathway Modulation for Isopentenol Production in E. coli 302





14.6 Current Status of Biofuel 302





14.7 Future Aspects 303





14.8 Conclusion 304





References 304





15 Biorefinery Approach for Bioethanol Production 313

Rituparna Saha, Debalina Bhattacharya and Mainak Mukhopadhyay





15.1 Introduction 313





15.2 Bioethanol 315





15.3 Classification of Biorefineries 315





15.3.1 Agricultural Biorefinery 316





15.3.2 Lignocellulosic Biorefinery 317





15.4 Types of Pre-Treatments 318





15.4.1 Physical Pre-Treatments 318





15.4.2 Chemical Pre-Treatments 319





15.4.3 Physico-Chemical Pre-Treatments 320





15.4.4 Biological Pre-Treatments 321





15.5 Enzymatic Hydrolysis of Biomass 323





15.6 Fermentation 324





15.7 Future Prospects for the Production of Bioethanol Through Biorefineries 325





15.8 Conclusion 326





References 326





16 Biorefinery Approach for Production of Biofuel From Algal Biomass 335

Bhasati Uzir and Amrita Saha





16.1 Introduction 335





16.2 Algal Biomass: The Third-Generation Biofuel 336





16.2.1 Algae as a Raw Material for Biofuels Production 338





16.2.2 Algae as Best Feedstock for Biorefinery 339





16.3 Microalgal Biomass Cultivation/Production 340





16.3.1 Open Pond Production 341





16.3.2 Closed Bioreactors/Enclosed PBRs 341





16.3.3 Hybrid Systems 341





16.4 Strain Selection and Microalgae Genetic Engineering Method Strain Selection Process for Biorefining of Microalgae 342





16.5 Harvesting Methods 343





16.6 Cellular Disruption 343





16.7 Extraction 344





16.8 Conclusion 344





References 344





17 Biogas Production and Uses 347

Anirudha Paul, Saptarshi Konar, Sampad Ghosh and Anirban Ray





17.1 Introduction 347





17.2 Potential Use of Biogas 348





17.2.1 Anarobic Digestion 348





17.2.2 Biogas from Energy Crops and Straw 349





17.2.3 Biogas from Fish Waste 349





17.2.4 Biogas from Food Waste 349





17.2.5 Biogas from Sewage Sludge 350





17.2.6 Biogas from Algae 350





17.2.7 Some Biogas Biorefinery 350





17.3 Pre-Treatment 350





17.3.1 Physical Pre-Treatment 350





17.3.2 Physiochemical Pre-Treatment 351





17.3.3 Chemical Pre-Treatment 351





17.3.4 Biological Pre-Treatment 351





17.4 Process and Technology 351





17.5 Biogas Purification and Upgradation 352





17.5.1 Removal of CO2 352





17.5.2 Removal of H2S 353





17.5.3 Removal of Water 353





17.6 Conclusion 353





References 353





18 Use of Different Enzymes in Biorefinery Systems 357

A.N. Anoopkumar, Sharrel Rebello, Embalil Mathachan Aneesh, Raveendran Sindhu, Parameswaran Binod, Ashok Pandey and Edgard Gnansounou





18.1 Introduction 357





18.2 Perspectives of the Biorefinery Concept 360





18.3 Starch Degradation 361





18.4 Biodegradation and Modification of Lignocellulose and Hemicellulose 361





18.5 Conversion of Pectins 363





18.6 Microbial Fermentation and Biofuel and Biodiesel Aimed Biorefinery 363





18.7 Conclusion 365





Acknowledgement 365





References 365





Part 4: Conclusion 369





19 Wheat Straw Valorization: Material Balance and Biorefinery Approach 371

Sachin A. Mandavgane and Bhaskar D. Kulkarni





19.1 Introduction 371





19.2 Wax Extraction Process 372





19.3 Combustion Process 373





19.4 Mass Balance for Combustion 375





19.5 Pyrolysis of Wheat Straw 376





19.6 Mass Balance of Pyrolysis 377





19.7 Separation of Valuable Chemicals From Bio-Oil 377





19.8 Production of Biodeisel From Wheat Straw 378





19.9 Conclusion 380





Acknowledgment 381





References 381





Index 383

Polecamy również książki

Strony www Białystok Warszawa
801 777 223