ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Fluid Transients in Pipeline Systems 2e

Fluid Transients in Pipeline Systems 2e

Autorzy
Wydawnictwo John Wiley and Sons Ltd
Data wydania 03/03/2004
Liczba stron 304
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
Język angielski
ISBN 9781860584053
Kategorie Przepływy, wiry, reologia
723.45 PLN (z VAT)
$162.74 / €155.11 / £134.65 /
Produkt na zamówienie
Dostawa 3-4 tygodnie
Ilość
Do schowka

Opis książki

This second edition of a well established and highly regarded text has been comprehensively refined and updated, based on the author's experience and feedback from using the original edition during the years since its first publication in the early 1990's. The book is split into three parts: Part 1 introduces the physical concepts of the subject and describes various methods for transient control and suppression. - Part 2 is for the more experienced user and describes how to approach the task of assessing to what extent systems might be at risk. It uses eight representative systems and goes on to describe a range of accidents and incidents arising from unexpected causes. - Part 3 provides a database to use in the assessment of pipe systems and the design of protective strategies

Fluid Transients in Pipeline Systems 2e

Spis treści

Acknowledgements xiii; Preface to the First Edition xv; Preface to the Second Edition xvii; Part 1; 1.1 Introduction 3; 1.1.1 Unacceptable Conditions 3; 1.1.2 Causes of Unsteady and Transient flows 4; 1.2 Unsteady Flows in Pipes and Tunnels 5; 1.2.1 Basic Ideas 5; 1.2.2 A Simple Example 6; 1.2.3 Pressure Wave Reflections and Pipeline Period 8; 1.2.4 A 'Rapid' Event 10; 1.2.5 Effects of Friction 10; 1.2.6 Max-Min Head Envelopes 10; 1.2.7 Column Separation and Vapour Cavity Formation 10; 1.2.8 Air and Gas Entrainment 12; 1.2.9 Fluid-Structure Interaction 13; 1.2.10 Water Hammer in Steam Pipelines 13; 1.2.11 Mass Oscillation and Rigid Column Behaviour 14; 1.2.12 Resonance and Auto-oscillation 15; 1.2.13 Key Points Developed in Sections 1.1 and 1.2 17; 1.3 Suppression of Fluid Transients 17; 1.3.1 Practical Methods of Surge Suppression 18; 1.3.2 Direct Action 18; 1.3.2.1 Stronger Pipes 18; 1.3.2.2 Rerouting 19; 1.3.2.3 Changing Valve Movements 19; 1.3.2.4 Avoiding Check Valve Slam 20; 1.3.2.5 Increasing the Inertia of Pumps and their Motors 22; 1.3.2.6 Minimizing Resonance Hazards 23; 1.3.3 Diversionary Tactics 24; 1.3.3.1 Air Vessels and Air Cushion Surge Chambers 25; 1.3.3.2 Accumulators 28; 1.3.3.3 Surge Shafts 29; 1.3.3.4 One-Way Surge Tanks (Feed Tanks) 30; 1.3.3.5 Vacuum-Breaking and Air Release Valves 31; 1.3.3.6 Pressure Relief Valves and Bursting Discs 33; 1.3.3.7 Bypass Lines 35; 1.3.3.8 Avoiding Water Hammer in Steam Pipelines 36; 1.3.4 Choice of Protection Strategy 36; 1.3.5 Summary of Part 1 38; Part 2; 2.1 Assessment and Management of Risk 43; 2.1.1 Introduction 43; 2.1.2 A Procedure for Fluid Transient Risk Assessments 47; 2.2 Demonstration Examples 49; 2.2.1 Rising Main Example 1 49; 2.2.2 Rising Main Example 2 61; 2.2.3 A Pumped Outfall 66; 2.2.4 A Gravity-Fed Main 69; 2.2.5 A Line to an Offshore Oil Terminal 72; 2.2.6 A Process System Supplied by a Ram Pump 76; 2.2.7 A High-Pressure Feed System 80; 2.2.8 Looped Networks 86; 2.2.9 An Ash Slurry Line 89; 2.2.10 A Sub-Sea Recharge System 92; 2.2.11 Cooling Water Systems 96; 2.2.12 A Phosphate Ester Pipeline 99; 2.2.13 Key Points Developed in Sections 2.1 and 2.2 101; 2.3 Computer Modelling of Transient Flows 102; 2.3.1 Introduction 102; 2.3.2 Brief Outline of Solution by the Method of Characteristics 103; 2.3.3 Idealizations and Assumptions 107; 2.3.4 Preparation for Computer-Aided Analyses 109; 2.3.4.1 System Data 110; 2.3.4.2 Fluid Data 110; 2.3.4.3 Pipes and Tunnels 110; 2.3.4.4 Junctions 110; 2.3.4.5 Pumps 111; 2.3.4.6 Valves 111; 2.3.4.7 Reservoirs, Sumps and Tanks 111; 2.3.4.8 Air Vessels, Accumulators and Surge Shafts 111; 2.3.4.9 Feed Tanks 112; 2.3.4.10 Bypass Lines 112; 2.3.4.11 Transient Event Data 112; 2.3.4.12 Aims and Objectives 113; 2.3.4.13 Expectations on Completion 113; 2.3.4.14 Idealizations and Assumptions 113; 2.3.4.15 Confirmation and Testing 114; 2.4 Accidents and Incidents 119; 2.4.1 The Case of the Lightweight Anchor Blocks 119; 2.4.2 The Dancing Feed Range 120; 2.4.3 Where has all the Water Gone? 121; 2.4.4 A Midnight Feast 122; 2.4.5 Green for Danger 123; 2.4.6 Minor Change - Major Problem 126; 2.4.7 A Positive Reflection 126; 2.4.8 Hanging Free 128; 2.4.9 The Devil is in the Detail 129; 2.4.10 Lessons to be Learned 130; 2.5 Transients: Current Status - Future Developments 131; 2.5.1 Summary of Fluid Transient Modelling Capability in 2003 131; 2.5.2 Knowledge Engineering and Fluid Transients 133; 2.5.3 Behaviour and Response of the Fluid 137; 2.5.4 Dynamic Behaviour of Components and Devices 138; 2.5.5 Fluid-Structure Interaction (FSI) 139; 2.5.6 Concluding Remarks 140; Part 3; 3.1 Some Basic Theory 143; 3.1.1 Change in Pressure across a Transient 143; 3.1.2 The Wave Speed Equation 144; 3.1.3 Equations for Calculating Wave Speeds 145; 3.1.3.1 Pipes of Circular Cross-Section 145; 3.1.3.2 Tunnels 151; 3.1.3.3 Plastic, uPVC and Glass-Reinforced Plastic Pipes 153; 3.1.3.4 Non-circular Ducts 153; 3.1.3.5 Liquids Other than Water 154; 3.1.3.6 Multiphase and Multicomponent Fluids 155; 3.1.3.7 Plastically Deforming Tubes 158; 3.1.3.8 Flexible Hoses 159; 3.1.3.9 Data for Wave Speed Estimates 160; 3.2 Rigid Column Approximations 162; 3.2.1 Equation of Motion 163; 3.2.2 Cavity Formation and Collapse in a Rising Main 164; 3.2.3 Air or Water Admission at a Low-Pressure Point 167; 3.3 Estimation of Air Vessel Capacities 168; 3.3.1 Rising Mains 168; 3.3.1.1 Unthrottled Air Vessels 169; 3.3.1.2 Throttled (Bypass) Air Vessels 185; 3.3.1.3 Worked Example and Outline Procedure 187; 3.3.2 Start-up of Deep-Well Pumps 190; 3.3.2.1 Outline Procedure 196; 3.3.2.2 Demonstration Example 197; 3.4 Pump Data 201; 3.4.1 Pump Performance Characteristics 201; 3.4.2 Moment of Inertia of Pumps and Motors 210; 3.4.2.1 Pump Inertias 210; 3.4.2.2 Motor Inertias 213; 3.5 Pressure Rises Following Valve Closure 214; 3.6 Air Relief and Vacuum-Breaking Valves 224; 3.6.1 Ventilation of Pipelines 225; 3.6.2 Air Valves for Surge Control 227; 3.6.3 Selection and Siting of Air Valves 230; 3.6.4 Air Valves in Fuel and Petrochemical Lines 233; 3.6.5 Air Valves for Sewage and Inustrial Effluents 234; 3.6.6 Air Valves for Deep-Well Installations 235; 3.6.7 The Sizing of Air Valves 235; 3.6.8 Care and Maintenance 238; 3.7 Pressure Relief and Safety Valves 238; 3.7.1 Sizing Considerations 241; 3.7.2 Bursting Discs 243; 3.8 Valve Characteristics 245; 3.8.1 Head Losses Through Valves 245; 3.8.2 Dynamic Performance of Check Valves 264; 3.9 Other Sources of Information 270; 3.9.1 Bibliography 270; 3.9.2 World Wide Web 271; References 274; Suggested Further Reading 279; Index 281

Polecamy również książki

Strony www Białystok Warszawa
801 777 223