ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Topological, Differential and Conformal Geometry of Surfaces

Topological, Differential and Conformal Geometry of Surfaces

Autorzy
Wydawnictwo Springer, Berlin
Data wydania
Liczba stron 284
Forma publikacji książka w miękkiej oprawie
Język angielski
ISBN 9783030890315
Kategorie Geometria rozmaitości Reimanna
Zapytaj o ten produkt
E-mail
Pytanie
 
Do schowka

Opis książki

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes' Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss-Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow's Theorem on compact holomorphic submanifolds in complex projective spaces.

Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.


Topological, Differential and Conformal Geometry of Surfaces

Spis treści

-1. Basic Differential Geometry.- 2. The Geometry of Manifolds.- 3. Hyperbolic Geometry.- 4. Some Examples and Sources of Geometry.- 5. Differential Topology of Surfaces.- 6. Riemann Surfaces.- 7. Surfaces of Genus g = 0.- 8. Surfaces with Riemannian Metric.- 9. Outline: Uniformization by Spectral Determinant.- 10. Uniformization by Energy.- 11. Families of Spaces.- 12. Functions on Riemann Surfaces.- 13. Line Bundles and Cohomology.- 14. Moduli Spaces and Teichmüller Spaces.- 15. Dimensions of Spaces of Holomorphic Sections.- 16. The Teichmüller Curve and its Universal Property.- 17. Riemann Surfaces and Algebraic Curves.- 18. The Jacobian of a Riemann Surface.- 19. Special Metrics on J-Surfaces.- 20. The Fundamental Group and Coverings.- A. Reminder: Topology.- References.- Index.

Polecamy również książki

Strony www Białystok Warszawa
801 777 223