ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Thinking Data Science: A Data Science Practitioner's Guide

Thinking Data Science: A Data Science Practitioner's Guide

Autorzy
Wydawnictwo Springer, Berlin
Data wydania
Liczba stron 266
Forma publikacji książka w twardej oprawie
Język angielski
ISBN 9783031023620
Kategorie Machine learning
307.65 PLN (z VAT)
$69.20 / €65.96 / £57.26 /
Produkt na zamówienie
Dostawa 3-4 tygodnie
Ilość
Do schowka

Opis książki

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single "Cheat Sheet".

The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.

 

Thinking Data Science: A Data Science Practitioner's Guide

Spis treści

1. Data Science Process2. Dimensionality Reduction - Creating Manageable Training Datasets3. Classical Algorithms - Overview4. Regression Analysis5. Decision Tree6. Ensemble - Bagging and Boosting7. K-Nearest Neighbors8. Naive Bayes9. Support Vector Machines: A supervised learning algorithm for Classification and Regression10. Clustering Overview11. Centroid-based Clustering12. Connectivity-based Clustering13. Gaussian Mixture Model14. Density-based15. BIRCH16. CLARANS17. Affinity Propagation Clustering18. STING19. CLIQUE20. Artificial Neural Networks21. ANN-based Applications22. Automated Tools23. Data Scientist's Ultimate Workflow

Polecamy również książki

Strony www Białystok Warszawa
801 777 223