ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Autorzy
Wydawnictwo Springer Nature
Data wydania 02/11/2016
Forma publikacji eBook: Reflowable eTextbook (ePub)
Język angielski
ISBN 9783319406244
Kategorie Teoria chaosu, Mechanika ciał ciekłych, Inżynieria mechaniczna i materiałowa, Inżynieria automatyki, Sprzęt komputerowy, Computer architecture & logic design, Sztuczna inteligencja
Zapytaj o ten produkt
E-mail
Pytanie
 
Do schowka

Opis książki

This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.    

Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Polecamy również książki

Strony www Białystok Warszawa
801 777 223