ABE-IPSABE HOLDINGABE BOOKS
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications

Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications

Wydawnictwo Wiley-Vch
Data wydania 2022
Liczba stron 528
Forma publikacji książka w twardej oprawie
Język angielski
ISBN 9783527349371
Kategorie Testowanie materiałów
779.10 PLN (z VAT)
$175.26 / €167.04 / £145.01 /
Produkt na zamówienie
Dostawa 3-4 tygodnie
Ilość
Do schowka

Opis książki

The book provides in-depth knowledge on advanced characterization methods of nanomaterials such as Raman, Infrared, UV-VIS and electron energy loss spectroscopy, and highlights applications of nanomaterials in energy research, optoelectronics and space science.

Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications

Spis treści

Preface xixAbout the Editor xxviiPart I Spectroscopy and Characterization 11 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides for Gas Sensing 3Olasunbo Farinre, Hawazin Alghamdi, and Prabhakar Misra1.1 Introduction and Overview 31.1.1 Graphitic Nanomaterials 31.1.1.1 Synthesis of Graphitic Nanomaterials 51.1.2 Metal Oxides 81.2 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides 91.2.1 Graphitic Nanomaterials 91.2.1.1 Characterization of Carbon Nanotubes (CNTs) 101.2.1.2 Characterization of Graphene and Graphene Nanoplatelets (GnPs) 111.2.2 Characterization of Tin Dioxide (SnO2) 121.3 Graphitic Nanomaterials and Metal Oxide-Based Gas Sensors 191.3.1 Fabrication of Graphitic Nanomaterials-Based Gas Sensors 191.3.1.1 Carbon Nanotube (CNT)-Based Gas Sensors 191.3.1.2 Graphene and Graphene Nanoplatelet (GnP)-Based Gas Sensors 201.3.2 Fabrication of Metal Oxide-Based Gas Sensors 211.3.2.1 Tin Dioxide (SnO2)-Based Gas Sensors 231.4 Conclusions and Future Work 24 Acknowledgments 26 References 26 2 Low-dimensional Carbon Nanomaterials: Synthesis, Properties, and Applications Related to Heat Transfer, Energy Harvesting, and Energy Storage 33Mahesh Vaka, Tejaswini Rama Bangalore Ramakrishna, Khalid Mohammad, and Rashmi Walvekar2.1 Introduction 332.2 Synthesis and Properties of Low-dimensional Carbon Nanomaterials 352.2.1 Zero-dimensional Carbon Nanomaterials (0-DCNs) 352.2.1.1 Fullerene 352.2.1.2 Carbon-encapsulated Metal Nanoparticles 352.2.1.3 Nanodiamond 372.2.2 Onion-like Carbons 382.2.3 One-dimensional Carbon Nanomaterials 392.2.3.1 Carbon Nanotube 392.2.3.2 Carbon Fibers 392.2.4 Two-dimensional Carbon Nanomaterials 402.3 Applications 422.3.1 Hydrogen Storage 422.3.2 Solar Cells 432.3.3 Thermal Energy Storage 442.3.4 Energy Conversion 452.4 Conclusions 46References 463 Mesoscale Spin Glass Dynamics 55Samaresh Guchhait3.1 Introduction 553.2 What Is a Spin Glass? 563.2.1 Spin Glass and Its Correlation Length 573.2.2 Mesoscale Spin Glass Dynamics 603.3 Summary 64 Acknowledgments 64 References 644 Raman Spectroscopy Characterization of Mechanical and Structural Properties of Epitaxial Graphene 67Amira Ben Gouider Trabelsi, Feodor V. Kusmartsev, Anna Kusmartseva, and Fatemah Homoud Alkallas4.1 Introduction 674.2 Epitaxial Graphene Mechanical Properties Investigation 684.2.1 Optical Location of Epitaxial Graphene Layers 684.2.2 Raman Location of Mechanical Properties Changes 714.2.2.1 Graphene 2D Mode 714.2.2.2 G Mode Investigation 744.2.2.3 Strain Percentage 76 4.3 Raman Polarization Study 774.3.1 Size Domain of Graphene Layer 774.3.2 Polarization Study 784.4 Conclusions 80 Acknowledgments 80 References 805 Raman Spectroscopy Studies of III?V Type II Superlattices 83Henan Liu and Yong Zhang5.1 Introduction 835.2 Raman Study on InAs/GaSb SL 845.2.1 Analysis on (001) Scattering Geometry 855.2.2 Analysis on (110) Scattering Geometry 865.3 Raman Study on InAs/InAs1-xSbx SL 905.3.1 Raman Results for the Constituent Bulks and InAs1-xSbx Alloys 905.3.2 Analysis on (001) Scattering Geometry for the SLs 935.3.3 Analysis on (110) Scattering for the SLs 955.4 A Comparison Among the InAs/InAs1-xSbx, InAs/GaSb, and GaAs/AlAs SLs 975.5 Conclusion 98References 986 Dissecting the Molecular Properties of Nanoscale Materials Using Nuclear Magnetic Resonance Spectroscopy 101Nipanshu Agarwal and Krishna Mohan Poluri6.1 Introduction to Nanomaterials 1016.2 Techniques Used for Characterization of Nanomaterials 1046.3 Nuclear Magnetic Resonance (NMR) Spectroscopy 1056.3.1 Principle of NMR Spectroscopy 1066.3.2 Various NMR Techniques Used in Nanomaterial Characterization 1066.3.2.1 One-dimensional NMR Spectroscopy 1086.3.2.2 Relaxometry (T1 and T2) 1086.3.2.3 Two-dimensional NMR Spectroscopy 1106.3.3 Advantages and Disadvantages of Using NMR Spectroscopy 1146.4 Applications of NMR in Nanotechnology 1156.4.1 NMR for Characterization of Nanomaterials 1156.4.1.1 Characterization of Gold Nanomaterials by NMR 1156.4.1.2 Characterization of Organic Nanomaterials by NMR 1196.4.1.3 Characterization of Quantum Dots and Nanodiamonds by NMR 1206.4.2 Elucidating the Molecular Characteristics/Interactions of Nanomaterials Using NMR 1206.4.2.1 Characterizing Nanodisks Using Paramagnetic NMR 1206.4.2.2 Characterizing Nanomaterials Using Low Field NMR (LF-NMR) 1236.4.2.3 Analyzing Nanomaterial Interactions Using 2D NMR Techniques 1236.4.3 Characterization of Magnetic Contrast Agents (MR-CAs) 1286.5 Conclusions 132 Acknowledgments 132 References 1327 Charge Dynamical Properties of Photoresponsive and Novel Semiconductors Using Time-Resolved Millimeter-Wave Apparatus 149Biswadev Roy, Branislav Vlahovic, M.H. Wu, and C.R. Jones7.1 Introduction 1497.1.1 Why Charge Dynamics for Novel Materials in the Millimeter-Wave Regime? 1507.1.2 Underlying Theory of Operation and Time-Resolved Data: Treatment of Internal Fields in Samples 1547.1.3 Apparatus Design and Instrumentation 1567.1.4 Sensitivity Analysis and Dynamic Range 1587.1.5 Calibration Factor 1597.2 Studies on RF Responses of Materials 1627.2.1 Transmission and Reflection Response for GaAs 1627.2.2 Silicon Response by Resistivity 1627.2.2.1 Charge Carrier Concentration 1657.2.2.2 Millimeter-Wave Probe and Laser Data 1667.2.2.3 TR-mmWC Charge Dynamical Parameter Correlation Table and Sample-Resistivity 1687.2.2.4 Photoconductance (?G) Using Calculated Sensitivity 1717.3 CdSxSe1-x Nanowires 1747.3.1 Transmission and Reflection Response Spectra for CdX Nanowire 1747.3.2 Millimeter-Wave Signal Coherence and Decay Response of CdSxSe1-x Nanowire 1767.4 Conclusions 1827.5 Data: CdSxSe1-x TR-mmWC Responses for Various Pump Fluences 182Acknowledgments 183References 1838 Metal Nanoclusters 187Sayani Mukherjee and Sukhendu Mandal8.1 Introduction 1878.2 Gold Nanoclusters 1898.2.1 Phosphine-protected Au-NCs 1908.2.2 Thiol-protected Nanoclusters 1938.2.2.1 Brust?Schiffrin Synthesis 1938.2.2.2 Modified Brust?Schiffrin Synthesis 1948.2.2.3 Size-focusing Method 1978.2.2.4 Ligand Exchange-induced Structural Transformation 2008.2.3 Other Ligands as Protecting Agents 2028.3 Mixed Metals Alloy Nanoclusters 2028.4 Conclusion 2038.5 Future Direction 203 Acknowledgment 204 References 204Part II Modeling and Simulation 2119 Simulations of Gas Separation by Adsorption 213Hawazin Alghamdi, Hind Aljaddani, Sidi Maiga, and Silvina Gatica9.1 Introduction 2139.2 Simulation Methods 2169.2.1 Molecular Dynamics Simulations 2169.2.2 Monte Carlo Simulations 2179.2.3 Ideal Adsorbed Solution Theory (IAST) 2189.3 Models 2209.3.1 Molecular Models 2209.3.2 Substrate Models 2219.3.3 Validation of the Methods and Force Fields 2229.4 Examples 2239.4.1 GCMC Simulation of CO2/CH4 Binary Mixtures on Nanoporous Carbons 2239.4.2 MD Simulations of CO2/CH4 Binary Mixtures on Graphene Nanoribbons/Graphite 2249.4.3 MD Simulations of H2O/N2 Binary Mixtures on Graphene 2289.4.4 Calculation of the Selectivity of CO2 and CH4 on Graphene Using the IAST 2319.5 Conclusion 236References 23610 Recent Advances in Weyl Semimetal (MnBi2Se4) and Axion Insulator (MnBi2Te4) 239Sugata Chowdhury, Kevin F. Garrity, and Francesca Tavazza10.1 Introduction 23910.2 Discussion 24110.2.1 MBS 24210.2.2 MBT 24310.3 Outlook 252References 253 Part III Applications 26111 Chemical Functionalization of Carbon Nanotubes and Applications to Sensors 263Khurshed Ahmad Shah and Muhammad Shunaid Parvaiz11.1 Introduction 26311.2 Properties of Carbon Nanotubes 26711.2.1 Electrical Properties 26711.2.2 Mechanical Properties 26911.2.3 Optical Properties 26911.2.4 Physical Properties 27111.3 Properties of Functionalized Carbon Nanotubes 27211.3.1 Mechanical Properties 27211.3.2 Electrical Properties 27211.4 Types of Chemical Functionalization 27311.4.1 Thermally Activated Chemical Functionalization 27311.4.2 Electrochemical Functionalization 27311.4.3 Photochemical Functionalization 27411.5 Chemical Functionalization Techniques 27411.5.1 Chemical Techniques 27411.5.2 Electrons/Ions Irradiation Techniques 27511.5.3 Specialized Techniques 27511.6 Sensing Applications of Carbon Nanotubes 27611.6.1 Gas Sensors 27611.6.2 Biosensors 27711.6.3 Chemical Sensors 27711.6.4 Electrochemical Sensors 27811.6.5 Temperature Sensors 27811.6.6 Pressure Sensors 27811.7 Advantages and Disadvantages of Carbon Nanotube Sensors 27811.8 Summary 279References 28012 Graphene for Breakthroughs in Designing Next-Generation Energy Storage Systems 287Abhilash Ayyapan Nair, Manoj Muraleedharan Pillai, and Sankaran Jayalekshmi12.1 Introduction 28712.2 Li?Ion Cells 28912.2.1 Basic Working Mechanism 28912.2.2 Role of Graphene: Graphene Foam-Based Electrodes for Li?Ion Cells 29112.3 Li?S Cells 29412.3.1 Advantages of Li?S Cells 29512.3.2 Working of Li?S Cells 29512.3.3 Challenges of Li?S Cells 29612.3.4 Graphene-Based Sulfur Cathodes for Li?S Cells 29712.3.5 Graphene Oxide-Based Sulfur Cathodes for Li?S Cells 29812.4 Supercapacitors 29912.4.1 Basic Working Principle 29912.4.2 Graphene-Based Supercapacitor Electrodes 30012.4.3 Graphene/Polymer Composites as Electrodes 30312.4.4 Graphene/Metal Oxide Composite Electrodes 30512.5 Li?Ion Capacitors 30612.5.1 Working Principle 30612.5.2 Graphene/Graphene Composites as Cathode Materials 30712.5.3 Graphene/Graphene Composites as Anode Materials 30912.6 Looking Forward 310References 31113 Progress in Nanostructured Perovskite Photovoltaics 317Sreekanth Jayachandra Varma and Ramakrishnan Jayakrishnan13.1 Introduction 31713.2 Nanostructured Perovskites as Efficient Photovoltaic Materials 31813.3 Perovskite Quantum Dots 32113.4 Perovskite Nanowires and Nanopillars 32413.4.1 2D Perovskite Nanostructures 32613.4.2 2D/3D Perovskite Heterostructures 33013.5 Summary 336References 33614 Applications of Nanomaterials in Nanomedicine 345Ayanna N. Woodberry and Francis E. Mensah14.1 Introduction 34514.2 Nanomaterials, Definition, and Historical Perspectives 34514.2.1 What Are Nanomaterials? 34514.2.2 Origin and Historical Perspectives 34614.2.3 Synthesis of Nanomaterials 34914.2.3.1 Inorganic Nanoparticles 34914.3 Nanomaterials and Their Use in Nanomedicine 35114.3.1 What Is Nanomedicine? 35114.3.2 The Myth of Small Molecules 35114.3.3 Nanomedicine Drug Delivery Has Implications that Go Beyond Medicine 35114.3.4 Improvement in Function 35114.3.5 Nanomaterials Use in Nanomedicine for Therapy 35114.3.5.1 Progress in Polymer Therapeutics as Nanomedicine 35114.3.5.2 Recent Progress in Polymer: Therapeutics as Nanomedicines 35214.3.5.3 Use of Linkers 35414.3.5.4 Targeting Moiety 35414.3.6 Polymeric Drugs 35514.3.7 Polymeric-Drug Conjugates 35514.3.8 Polymer?Protein Conjugates 35614.4 The Use of Nanomaterials in Global Health for the Treatment of Viral Infections Such As the DNA and the RNA Viruses, Retroviruses, Ebola, and COVID-19 35614.4.1 Nanomaterials in Radiation Therapy 35814.5 Conclusion 359References 35915 Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries 361Quinton L. Williams, Adewale A. Adepoju, Sharah Zaab, Mohamed Doumbia, Yahya Alqahtani, and Victoria Adebayo15.1 Introduction 36115.2 Battery Background 36215.2.1 Genesis of the Rechargeable Battery 36215.2.2 Battery Cell Classifications 36315.2.2.1 Primary Batteries ? Non-rechargeable Batteries 36315.2.2.2 Secondary Batteries ? Rechargeable Batteries 36315.2.3 Comparison of Rechargeable Batteries 36315.2.4 Internal Battery Cell Components 36415.2.4.1 Cathode 36515.2.4.2 Anode 36615.2.4.3 Electrolyte 36615.2.5 Crystal Structure of Active Materials 36615.2.5.1 Layered LiCoO2 36715.2.5.2 Spinel LiM2O4 36715.2.5.3 Olivine LiFePO4 36815.2.5.4 NCM 36915.2.6 Principle of Operation of Li-Ion Batteries 37015.2.7 Battery Terminology 37115.2.7.1 Battery Safety 37315.2.8 A Glimpse into the Future of Battery Technology 37415.3 High C-Rate Performance of LiFePO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries 37515.3.1 Introduction 37515.3.2 Experimental 37515.3.2.1 Preparation of Composite Cathode 37515.3.2.2 Characterization 37615.3.3 Results and Discussion 37615.3.4 Summary 37915.4 Graphene Nanoplatelet Additives for High C-Rate LiFePO4 Battery Cathodes 38015.4.1 Introduction 38015.4.2 Experimental 38115.4.2.1 Composite Cathode Preparation and Battery Assembly 38115.4.2.2 Characterizations and Electrochemical Measurements 38215.4.3 Results and Discussion 38215.4.4 Summary 38615.5 LiFePO4 Battery Cathodes with PANI/CNF Additive 38615.5.1 Introduction 38615.5.2 Experimental 38615.5.2.1 Preparation of the PANI/CNF Conducting Agent and Coin Cell 38715.5.3 Results and Discussion 38715.5.4 Conclusion 39215.6 Reduced Graphene Oxide ? LiFePO4 Composite Cathode for Li-Ion Batteries 39315.6.1 Introduction 39315.6.2 Experimental 39415.6.3 Results and Discussion 39415.6.4 Summary 39815.7 Rate Performance of Carbon Nanofiber Anode for Lithium-Ion Batteries 39815.7.1 Introduction 39815.7.2 Experimental 39815.7.3 Results and Discussion 39915.7.4 Summary 40115.8 NCM Batteries with the Addition of Carbon Nanofibers in the Cathode 40215.8.1 Introduction 40215.8.2 Experimental 40315.8.3 Results and Discussion 40315.8.4 Summary 40515.9 Conclusion 407 Acknowledgments 407 References 408Part IV Space Science 41516 Micro-Raman Imaging of Planetary Analogs: Nanoscale Characterization of Past and Current Processes 417Dina M. Bower, Ryan Jabukek, Marc D. Fries, and Andrew Steele16.1 Introduction 41716.2 Relationships Between Minerals 42116.2.1 Minerals in the Solar System 42116.2.2 Minerals as Indicators of Life and Habitability 42516.3 Planetary Analogs 42716.3.1 Modern Terrestrial Analogs 42716.3.2 Ancient Terrestrial Analogs 42916.4 Meteorites and Lunar Rocks 43116.5 Carbon 43416.5.1 Definition and Description of Macromolecular Carbon 43416.5.2 Macromolecular Carbon on the Earth and in Astromaterials 43516.5.3 Macromolecular Carbon in Petrographic Context 43716.6 Conclusion 439References 43917 Machine Learning and Nanomaterials for Space Applications 453Eric Lyness, Victoria Da Poian, and James Mackinnon17.1 Introduction to Artificial Intelligence and Machine Learning 45317.1.1 What Do We Mean by Artificial Intelligence and Machine Learning? 45417.1.2 The Field of Data Analysis and Data Science 45517.1.2.1 Data Analysis 45517.1.2.2 Data Science 45517.1.3 Applications in Nanoscience 45617.2 Machine Learning Methods and Tools 45717.2.1 Types of ML 45717.2.1.1 Supervised 45717.2.1.2 Unsupervised 45917.2.1.3 Semi-supervised 46017.2.1.4 Reinforcement Learning 46017.2.2 The Basic Techniques and the Underlying Algorithms 46017.2.2.1 Regression (Linear, Logistic) 46017.2.2.2 Decision Tree 46117.2.2.3 Neural Networks 46117.2.2.4 Expert Systems 46317.2.2.5 Dimensionality Reduction 46317.2.3 Available Tools: Discussion of the Software Available, Both Free and Commercial, and How They Can Be Used by Nonexperts 46417.3 Limitations of AI 46417.3.1 Data Availability 46417.3.1.1 Splitting Your Dataset 46417.3.2 Warnings in Implementation (Overfitting, Cross-validation) 46517.3.3 Computational Power 46517.4 Case Study: Autonomous Machine Learning Applied to Space Applications 46617.4.1 Few Existing AI Applications for Planetary Missions 46617.4.2 MOMA Use-Case Project (Leaning Toward Science Autonomy) 46717.5 Challenges and Approaches to Miniaturized Autonomy 46817.5.1 Computing Requirements of AI/Machine Learning 46817.5.2 Why Is Space Hard? 46917.5.3 Software Approaches for Embedded Hardware 47117.6 Summary: How to Approach AI 473References 474Index 477

Polecamy również książki

Strony www Białystok Warszawa
801 777 223