Autorzy | |
Wydawnictwo | Springer, Berlin |
Data wydania | |
Liczba stron | 240 |
Forma publikacji | książka w twardej oprawie |
Język | angielski |
ISBN | 9789811324192 |
Kategorie | Biotechnologia |
This book presents a comprehensive collection of various in situ and ex-situ soil remediation regimes that employ natural or genetically modified microbes, plants, and animals for the biodegradation of toxic compounds or hazardous waste into simpler non-toxic products. These techniques are demonstrated to be functionally effective in connection with physical, chemical, and biological strategies.
Soil and water contamination through heavy metals, hydrocarbons and radioactive wastes is of global concern, as these factors have cumulative effects on the environment and human health through food-chain contamination. The book discusses the utilization of algae, plants, plant-associated bacteria, fungi (endophytic or rhizospheric) and certain lower animals for the sustainable bioremediation of organic and inorganic pollutants. In addition, it explores a number of more recent techniques like biochar and biofilms for carbon sequestration, soil conditioning and remediation, and water remediation. It highlights a number of recent advances in nanobioremediation, an emerging technology based on biosynthetic nanoparticles. Lastly, it presents illustrative case studies and highlights the successful treatment of polluted soils by means of these strategies.
Biotechnological strategies for effective remediation of polluted soils
Chapter 1. Soil pollution: causes and consequences.- Chapter 1.1. Introduction.- Chapter 1.2. Causes of soil pollution.- Chapter 1.2.1. Natural sources.- Chapter 1.2.1.1. Volcanic eruptions.- Chapter 1.2.1.2. Earthquakes.- Chapter 1.2.1.3. Alterations in rainfall patterns.- Chapter 1.2.1.4. Geographical changes.- Chapter 1.2.1.5. Tsunami. .- Chapter 1.2.2. Anthropogenic sources.- Chapter 1.2.2.1. Solid wastes.- Chapter 1.2.2.2. Agricultural practices.- Chapter 1.2.2.3. Radioactive wastes.- Chapter 1.2.2.4. Chemical wastes.- Chapter 1.2.2.5. Mining and smelting.- Chapter 2. Ex situ soil remediation strategies.- Chapter 2.1. Introduction.- Chapter 2.2. Land farming.- Chapter 2.3. Biopile.- Chapter 2.4. Windrow.- Chapter 2.5. Soil washing.- Chapter 2.6. Composting.- Chapter 2.7. Bioreactor.- Chapter 2.8. Ion exchange.- Chapter 2.9. Absorption/adsorption.- Chapter 2.10. Pyrolysis.- Chapter 2.11. Ultrasonic technology.- Chapter 3. In situ soil remediation strategies.- Chapter 3.1. Physical methods.- Chapter 3.1.1. Physical remediation.- Chapter 3.1.2. Physical separation.- Chapter 3.1.3. Soil flushing.- Chapter 3.1.4. Volatilization.- Chapter 3.1.5. Froth flotation.- Chapter 3.1.6. Thermal remediation.- Chapter 3.1.6.1. Electrical resistance heating (ERH) .- Chapter 3.1.6.2. Steam injection and extraction.- Chapter 3.1.6.3.Conductive heating.- Chapter 3.1.6.4. Radio-frequency heating (RFH) .- Chapter 3.1.6.5. In situ vitrification (ISV) .- Chapter 4. Chemical methods.- Chapter 4.1. Introduction.- Chapter 4.2.Chemical leaching.- Chapter 4.3.Chemical fixation.- Chapter 4.4.Chemical oxidation.- Chapter 4.5. Electrokinetic remediation.- Chapter 4.6. Biochar and soil remediation.- Chapter 5.Introduction.- Chapter 5.1.1. Carbon sequestration.- Chapter 5.1.2. Nutrient exchange.- Chapter 5.1.3. Water holding.- Chapter 5.1.4. Adsorption/ absorption.- Chapter 5.1.5. Oxidation/reduction.- Chapter 5.2. Biochar-microbe interaction in soil.- Chapter 6. Soil remediation through microbes.- Chapter 6.1. Introduction.- Chapter 6.2. Microbial degradation of petroleum hydrocarbons.- Chapter 6.3. Bioventing.- Chapter 6.4. Bioleaching.- Chapter 6.5. Bioaugmentation.- Chapter 6.6. Mycoremediation.- Chapter 7. Soil remediation through algae, plants and animals.- Chapter 7.1. Introduction.- Chapter 7.2. Phycoremediation.- Chapter 7.3. Phytoremediation.- Chapter 7.3.1. Rhizofiltration.- Chapter 7.3.2. Transformation.- Chapter 7.3.2.1. Degradation.- Chapter 7.3.2.2. Volatilization.- Chapter 7.3.2.3. Stabilization.- Chapter 7.3.3. Phytoextraction/phytoaccumulation.- Chapter 7.3.4. Phytomining.- Chapter 7.3.5. Phytostimulation.- Chapter 7.4. Genetic engineering approaches for phytoremediation.- Chapter 7.5. Animal remediation.- Chapter 8. Nanobioremediation.- Chapter 8.1. Introduction.- Chapter 8.2. Properties of nanoparticles.- Chapter 8.3. Types of nanomaterials.- Chapter 8.3.1. TiO2 (Titanium dioxide) based nanoparticles.- Chapter 8.3.2. Iron Based Nanoparticles.- Chapter 8.3.3. Bimetallic Nanoparticles.- Chapter 8.3.4. Nanoclays.- Chapter 8.3.5. Nanotubes.- Chapter 8.3.6. Dendrimer and nanosponges.- Chapter 8.3.7. Magnetic nanoparticles 8.4. Green synthesis of nanoparticles for soil remediation.- Chapter 8.5. Nnaobioremediation.- Chapter 9. Case studies and future prospects.- Chapter 9.1. Case studies on soil remediation.- Chapter 9.2. Future prospects.