In
Active Electronically Scanned Arrays: Fundamentals and Applications, electromagnetics expert Dr. Arik D. Brown delivers a foundational treatment of active electronically scanned arrays (AESAs) ideal for engineering students and professionals. The distinguished author provides an overview of the primary subsystems of an AESA and detailed explanations of key design concepts and fundamentals for subsystems, including antenna array elements, transmit/receive modules, and beamformers.Performance results for various AESA architectures often found in industry, including analog, subarrayed, and digital beamforming AESAs, are discussed. With a focus on practical knowledge and applications,
Active Electronically Scanned Arrays: Fundamentals and Applications offers an accessible overview of a technology critical to the implementation of collision avoidance in cars, air surveillance radar, communication antennas, and defense technologies.The book also includes:* A thorough introduction to AESAs, including a top-level block diagram view and explanations of key components and subsystems* Detailed explanations of the impact of AESAs on mission applications including Radar, Electronic Attack (EA), Electronic Support Measures (ESM), SIGINT and Communications* Comprehensive explorations of antenna array elements, transmit/receive modules, and beamformers including their purpose, functions, and practical design considerations* In-depth examinations of AESA architecture performance for current and future systems* Utility of AESAs for implementing adaptive beamforming for Electronic Counter-Countermeasures (ECCM)Perfect for electrical engineers working with active electronically scanned arrays, electronic warfare technologies, radar, or communications,
Active Electronically Scanned Arrays: Fundamentals and Applications will also prove to be an invaluable resource for defense students undertaking military education and training.
Active Electronically Scanned Arrays: Fundamentals and Applications
Preface xiiiAcknowledgments xvAcronyms xvii1 AESA Overview 11.1 Introduction 11.2 AESA History 11.3 AESA Applications 31.3.1 RADAR 31.3.2 ElectronicWarfare 71.3.2.1 Electronic Attack 91.3.2.2 Electronic Support Measures 91.3.3 Communications 101.3.4 Signals Intelligence 101.4 AESA Point of Reference 111.5 Block Diagram 151.5.1 Antenna Array Elements 151.5.2 Transmit Receive Modules 161.5.3 Beamformer 161.6 AESA Cascaded Performance and Architecture Selection 16References 172 AESA Theory 192.1 Introduction 192.2 General One-Dimensional Formulation 202.2.1 Pattern Expression without Electronic Scanning 202.2.2 Pattern Expression with Electronic Scanning 222.3 AESA Fundamental Topics 232.3.1 Beamwidth 232.3.2 Instantaneous Bandwidth 242.3.3 Grating Lobes 272.3.4 Error Effects 292.3.5 Quantization Effects 292.3.6 Random Error Effects (Amplitude and Phase) 302.4 One-Dimensional Pattern Synthesis 312.4.1 Varying Amplitude Distribution 332.4.2 Varying Frequency 392.4.3 Varying Scan Angle 392.5 Conformal Arrays 402.5.1 Array Pattern for a Linear Array 402.5.2 Array Pattern for a Conformal Array 422.5.3 Example 432.5.3.1 Conformal One-Dimensional Array 432.6 2D AESA Pattern Formulation 442.6.1 AESA Spatial Coordinate Definitions 452.6.2 Antenna Coordinates 462.6.3 Radar Coordinates 482.6.4 Antenna Cone Angle Coordinates 492.6.5 Sine Space Representation 502.6.6 AESA Element Grid 522.6.6.1 Rectangular Grid 522.6.6.2 Triangular Grid 552.6.7 Two-Dimensional Pattern Synthesis 562.6.7.1 Ideal Patterns 572.7 Circular Grid AESA Patterns 612.8 Tilted AESA Patterns 662.9 Integrated Gain 71References 733 Array Elements 753.1 Introduction 753.2 Bandwidth 783.3 Polarization 813.3.1 Electromagnetic Polarization Fundamentals 823.3.2 Types of Polarization 833.3.2.1 Linear Polarization 833.3.2.2 Circular Polarization 843.3.2.3 Elliptical Polarization 853.3.3 Polarization States 873.3.4 Array Polarization 883.3.4.1 Key Requirements 903.4 Array Grid 913.5 Mismatch and Ohmic Loss 923.6 Active Match 953.7 Scan Loss 98References 1014 Transmit Receive Modules 1034.1 Overview 1034.1.1 TRM Baseline Topology 1084.1.1.1 TR Switches 1084.1.1.2 Amplifiers 1094.1.1.3 Pre-Amplifier and HPA 1094.1.1.4 LNA 1104.1.1.5 Phase Shifter 1104.1.1.6 Attenuator 1104.1.1.7 Circulator 1104.1.1.8 Receiver Protector 1114.1.1.9 Filters 1114.1.2 TRM Topology Types 1114.1.2.1 Receive Only 1114.1.2.2 Channelization 1124.1.2.3 Simultaneous Beams 1134.1.2.4 Multi-Channel TRMs 1134.2 Transmit Operation 1154.2.1 Efficiency and Amplifier Classes 1164.2.2 P1dB 1174.2.3 Linearity 1184.2.3.1 Harmonics and Intermodulation Products 1184.2.3.2 Intercept Point 1214.2.4 Wideband Operation 1234.2.4.1 Nonlinear Beams 1234.2.5 Thermal Implications Due to Output Match 1254.3 Receive Operation 1274.4 Reliability 1284.4.1 Probability of Failed Elements 1294.4.2 MTBF 132References 1345 Beamformers 1355.1 Introduction 1355.1.1 Tile and Brick Architectures 1365.1.2 Corporate and Noncorporate Beamforming 1405.2 Lossless Beamformer 1425.2.1 Transmit 1425.2.2 Receive 1435.3 BeamformerWeighting 1455.4 DistributedWeighting 1485.5 Beam Spoiling 1495.6 Monopulse for Angle Estimation 1535.6.1 Three Channel Monopulse with an AESA 1545.6.1.1 Calibration for Monopulse Coupler Errors 1595.6.2 Two-Channel Monopulse with an AESA 1595.6.2.1 Low Sidelobe Delta Beams 162References 1636 AESA Cascaded Performance 1656.1 Introduction 1656.2 Fundamental Expressions for Cascade Calculations 1686.2.1 Noise Model 1686.2.1.1 Active Device 1686.2.1.2 Resistive Device 1696.2.1.3 Noise Factor Definition 1696.2.2 Cascaded Noise Factor 1706.3 AESA Cascaded Performance 1746.3.1 AESA Output Signal Power 1746.3.2 AESA Output Noise Power 1756.3.3 AESA Signal/Noise Gain and Noise Factor 1776.3.4 AESA nth-Order Intercept Point 1796.3.5 AESA Spurious Free Dynamic Range 181References 1827 AESA Architectures 1837.1 Introduction 1837.2 Baseline Architecture 1837.3 Subarray Architectures 1867.4 Subarray Pattern Formulation 1887.5 Subarray Beamforming 1897.5.1 Subarray Phase Shifter Beamforming 1897.5.2 Subarray Time Delay Beamforming 1917.5.3 Subarray Digital Beamforming 1947.6 Overlapped Subarrays 1957.7 Elemental DBF Architecture 1997.8 Adaptive Beamforming 201References 207Appendix A Array Factor (AF) Derivation 209Appendix B Instantaneous Bandwidth Derivation 211Reference 212Appendix C Triangular Grid Grating Lobes Derivation 213References 215Appendix D General Expression for Intercept Point Derivation 217Appendix E Impact of Failed Elements on AESA Performance 219Appendix F Sidelobe Blanking with an AESA 223Reference 227Appendix G External Noise Considerations 229Appendix H Important AESA Equations Reference 233H.1 System Level Equations 233H.1.1 Radar Range Equation 233H.1.2 Signal and Noise Gain 233H.1.3 Array Gain 234H.2 AESA Theory 234H.2.1 1D Pattern 234H.2.1.1 Phase Shifter and Time Delay Steering 234H.2.1.2 General Expression 234H.2.1.3 Conformal Array 234H.2.1.4 Alternate AF Expression 235H.2.2 2D Pattern 235H.2.3 Beamwidth 235H.2.4 Instantaneous Bandwidth (IBW) 235H.2.5 Grating Lobes 235H.2.6 AESA Errors 236H.2.7 Coordinate System Transformations 236H.2.8 Sine Space 237H.2.9 Roll, Pitch, and Yaw Formulas 237H.2.10 Integrated Gain 237H.3 Array Elements 237H.3.1 Fractional Bandwidth 237H.3.2 Polarization 238H.3.3 Active Match 238H.3.4 Scan Loss 238H.4 Transmit Receive Modules 239H.4.1 Amplifier Expressions 239H.4.2 Reliability 239H.5 Beamformer 240H.5.1 General Beamformer Expressions 240H.5.2 Beam Spoiling 240H.5.3 Monopulse AOA 240H.6 AESA Cascaded Performance 241H.6.1 Fundamental Expressions 241H.6.2 AESA Cascaded Expressions 241H.7 Adaptive Beamforming 242Reference 243Index 245