ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory

Authors
Publisher Springer, Berlin
Year
Pages 706
Version hardback
Language English
ISBN 9783031220067
Categories Cybernetics & systems theory
Delivery to Argentina

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Elements of Applied Bifurcation Theory

Table of contents

1 Introduction to Dynamical Systems.- 2 Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems.- 3 One-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 4 One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 5 Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems.- 6 Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria.- 7 Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems.- 8 Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 9 Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 10 Numerical Analysis of Bifurcations.- A Basic Notions from Algebra, Analysis, and Geometry.- A.1 Algebra.- A.1.1 Matrices.- A.1.2 Vector spaces and linear transformations.- A.1.3 Eigenvectors and eigenvalues.- A.1.4 Invariant subspaces, generalized eigenvectors, and Jordan normal form.- A.1.5 Fredholm Alternative Theorem.- A.1.6 Groups.- A.2 Analysis.- A.2.1 Implicit and Inverse Function Theorems.- A.2.2 Taylor expansion.- A.2.3 Metric, normed, and other spaces.- A.3 Geometry.- A.3.1 Sets.- A.3.2 Maps.- A.3.3 Manifolds.- References.

We also recommend books

Strony www Białystok Warszawa
801 777 223