ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Principles of Mathematics for Economics

Principles of Mathematics for Economics

Authors
Publisher Springer, Berlin
Year
Pages 1505
Version paperback
Language English
ISBN 9783319447131
Categories Economic theory & philosophy
Delivery to Argentina

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

This textbook provides a comprehensive and rigorous introduction to various mathematical topics that play a key role in economics and finance. Motivated by economic applications, the authors introduce students to key mathematical ideas through an economic viewpoint, starting from the real line and moving to n-dimensional spaces, with a special emphasis on global optimization. Additionally, the text helps unacquainted, but intellectually curious, students become familiar with mathematical proofs.

The book is suitable for both self-study and rigorous introductory mathematics courses for undergraduate students majoring in economics or finance.

Principles of Mathematics for Economics

Table of contents

Part I Structures.- 1 Sets and Numbers: An Intuitive Introduction.- 2 Cartesian Structure and R^n.- 3 Linear Structure.- 4 Euclidean Structure.- 5 Topological Structure.- 6 Functions.- 7 Cardinality.- Part II Discrete Analysis.- 8 Sequences.- 9 Series.- 10 Discrete Calculus.- Part III Continuity.- 11 Limits of Functions.- 12 Continuous Functions.- Part IV Linear and Nonlinear Analysis.- 13 Linear Functions and Operators.- 14 Concave Functions.- 15 Homogeneous Functions.- 16 Lipschitz Functions.- 17 Supermodular Functions.- Part V Optima.- 18 Optimization Problems.- 19 Semicontinuous optimization.- 20 Projections and Approximations.- 21 Forms and spectra.- Part VI Differential Calculus.- 22 Derivatives.- 23 Differential Calculus in Several Variables.- 24 Differential Methods.- 25 Approximation.- 26 Concavity and Differentiability.- 27 Nonlinear Riesz?s Theorems.- 28 Implicit Functions.- 29 Inverse Functions.- 30 Study of Functions.- Part VII Differential Optimization.- 31 Unconstrained Optimization.- 32 Equality Constraints.- 33 Inequality Constraints.- 34 General Constraints.- 35 Intermezzo: Correspondences.- 36 Parametric Optimization Problems.- 37 Interdependent Optimization.- Part VIII Integration.- 38 The Riemann Integral.- 39 Improper Riemann integrals.- 40 Parametric Riemann integrals.- 41 Stieltjes? Integral.- 42 Moments.- Part IX Appendices.- A Binary Relations.- B Permutations.- C Notions of Trigonometry.- D Elements of Intuitive Logic.- E Mathematical Induction.- F Cast of Characters.

We also recommend books

Strony www Białystok Warszawa
801 777 223