ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Introduction to Differential Geometry

Introduction to Differential Geometry

Authors
Publisher Springer, Berlin
Year
Pages 418
Version paperback
Language English
ISBN 9783662643396
Categories Differential & Riemannian geometry
Delivery to United States

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point.

The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor.

An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Introduction to Differential Geometry

Table of contents

1 What is Differential Geometry?.- 2 Foundations.- 3 The Levi-Civita Connection.- 4 Geodesics.- 5 Curvature.- 6 Geometry and Topology.- 7 Topics in Geometry.- Appendix.

We also recommend books

Strony www Białystok Warszawa
801 777 223