ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Applied Photometry, Radiometry, and Measurements of Optical Losses

Applied Photometry, Radiometry, and Measurements of Optical Losses

Authors
Publisher Springer Netherlands
Year
Pages 712
Version hardback
Language English
ISBN 9789400721647
Categories
Delivery to United States

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determination of power and energy parameters of radiation and color properties of light.

Applied Photometry, Radiometry, and Measurements of Optical Losses

Table of contents

Acknowledgements. Abstract. Preface.

PART I APPLIED PHOTOMETRY AND RADIOMETRY. I.1. Background.

Chapter 1 Radiometric and photometric quantities and notions. 1.1. Physical sense of radiometric conception. 1.2. Parameters of optical radiation. 1.3. Radiation interactions with material objects.

Chapter 2 Methods of photometric and radiometric measurements. 2.1. Evaluation of power and energy extents of optical radiation. 2.2. Analysis of attenuation factors. 2.3. Measurements of color coordinates and indices. 2.4. Photometry of integrating spheres.

Chapter 3 Radiometry of partially coherent radiation. 3.1. Coherence and radiative transfer. 3.2. Laser and pulsed light. 3.3. Interference phenomena and optical measurements. 3.4. Diffraction corrections and gratings in radiometry and photometry.

Chapter 4 Photometers and radiometers. 4.1. Optical design and absolute calibration of radiometers. 4.2. Attenuation and color photometers and spectrophotometers. 4.3. Photometric accuracy and verification of linearity.

PART II MEASUREMENTS OF OPTICAL LOSSES. II.1. Features of low-loss assessments.

Chapter 5 Conventional measurement techniques. 5.1. Internal transmittance and attenuation coefficient. 5.2. Specular reflectance. 5.3. Scattering factor.

Chapter 6 Systems of multiple reflections. 6.1. Flat-mirror and prism reflector cells. 6.2. Multipass cavities. 6.3. Mirror waveguides. 6.4. Multiplication of Raman scattering. 6.5. Interference-fringe reduction in multipass and derivative spectroscopy.

Chapter 7 Laser spectroscopy. 7.1. Active intracavity measurements. 7.2. Comparison of intracavity methods. 7.3. Intracavity and ringdown spectroscopy.

Chapter 8 Measurements in passive resonators. 8.1. Pulse-separation techniques. 8.2. Interferometric analysis. 8.3. Resonant phase-shift and decay-time studies. 8.4. Quality-factor transfer method and asymmetric-cavity measurements. 8.5. Evaluation of loss-dichroism and phase-dispersion.

Chapter 9 Determination of absorption losses. 9.1. Laser calorimetry. 9.2. Thermal-lensing, photothermal, and photoacoustic techniques. 9.3. Emissive spectroscopy. 9.4. Integrating spheres as multiple-reflection cavities.

Chapter 10 Direct attenuation measurements. 10.1. Differential, ratio, and single-channel systems. 10.2. Derivative spectroscopy. 10.3. Wavelength tuning and balanced detection. 10.4. Separation of bulk and surface losses. 10.5. Reflection spectrophotometry.

Chapter 11 Propagation losses in fibers and waveguides. 11.1. Measurements of internal optical attenuation for guided light. 11.2. Analysis of return losses via backscattered radiation. 11.3. Partition of distributed losses and attenuation factors in reflected light. 11.4. Interference noise and crosstalk in fiber transmission systems.

References.

We also recommend books

Strony www Białystok Warszawa
801 777 223