Księgarnia naukowa
English Polski
Dostęp on-line

Książki

0.00 PLN
Schowek (0) 
Schowek jest pusty
Wydawcy udostępniają darmowe zasoby na czas epidemii


Wireless Information and Power Transfer: Theory and Practice

Wireless Information and Power Transfer: Theory and Practice

Autorzy
Wydawnictwo John Wiley and Sons Ltd
Data wydania 18/01/2019
Liczba stron 320
Forma publikacji książka w twardej oprawie
Poziom zaawansowania Dla profesjonalistów, specjalistów i badaczy naukowych
ISBN 9781119476795
Kategorie Inżynieria elektroniczna, Inżynieria komunikacyjna i telekomunikacyjna
544.00 PLN (z VAT)
$137.77 / €121.60 / £108.99 /
Produkt dostępny
Dostawa 2 dni
Ilość
Do schowka

Opis książki

Wireless Information and Power Transfer offers an authoritative and comprehensive guide to the theory, models, techniques, implementation and application of wireless information and power transfer (WIPT) in energy-constrained wireless communication networks. With contributions from an international panel of experts, this important resource covers the various aspects of WIPT systems such as, system modeling, physical layer techniques, resource allocation and performance analysis. The contributors also explore targeted research problems typically encountered when designing WIPT systems.

Wireless Information and Power Transfer: Theory and Practice

Spis treści

List of Contributors xiii


Preface xvii


1 The Era of Wireless Information and Power Transfer 1
DerrickWing Kwan Ng, Trung Q. Duong, Caijun Zhong, and Robert Schober


1.1 Introduction 1


1.2 Background 3


1.2.1 RF-BasedWireless Power Transfer 3


1.2.2 Receiver Structure forWIPT 4


1.3 Energy Harvesting Model andWaveform Design 6


1.4 Efficiency and Interference Management inWIPT Systems 9


1.5 Security in SWIPT Systems 10


1.6 CooperativeWIPT Systems 11


1.7 WIPT for 5G Applications 11


1.8 Conclusion 12


Acknowledgement 13


Bibliography 13


2 Fundamentals of Signal Design for WPT and SWIPT 17
Bruno Clerckx andMorteza Varasteh


2.1 Introduction 17


2.2 WPT Architecture 19


2.3 WPT Signal and System Design 21


2.4 SWIPT Signal and System Design 29


2.5 Conclusions and Observations 33


Bibliography 33


3 Unified Design ofWireless Information and Power Transmission 39
Dong In Kim, Jong Jin Park, Jong HoMoon, and Kang Yoon Lee


3.1 Introduction 39


3.2 Nonlinear EH Models 40


3.3 Waveform and Transceiver Design 43


3.3.1 Multi-tone (PAPR) based SWIPT 43


3.3.2 Dual Mode SWIPT 48


3.4 Energy Harvesting Circuit Design 53


3.5 Discussion and Conclusion 58


Bibliography 58


4 Industrial SWIPT: Backscatter Radio and RFIDs 61
Panos N. Alevizos and Aggelos Bletsas


4.1 Introduction 61


4.2 Wireless Signal Model 62


4.3 RFID Tag Operation 64


4.3.1 RF Harvesting and Powering for RFID Tag 64


4.3.2 RFID Tag Backscatter (Uplink) Radio 65


4.4 Reader BER for Operational RFID 68


4.5 RFID Reader SWIPT Reception 69


4.5.1 Harvesting Sensitivity Outage 69


4.5.2 Power Consumption Outage 70


4.5.3 Information Outage 71


4.5.4 Successful SWIPT Reception 71


4.6 Numerical Results 72


4.7 Conclusion 76


Bibliography 76


5 Multi-antenna Energy Beamforming for SWIPT 81
Jie Xu and Rui Zhang


5.1 Introduction 81


5.2 System Model 84


5.3 Rate-Energy Region Characterization 87


5.3.1 Problem Formulation 87


5.3.2 Optimal Solution 90


5.4 Extensions 93


5.5 Conclusion 94


Bibliography 95


6 On the Application of SWIPT in NOMA Networks 99
Yuanwei Liu andMaged Elkashlan


6.1 Introduction 99


6.1.1 Motivation 100


6.2 Network Model 101


6.2.1 Phase 1: Direct Transmission 101


6.2.2 Phase 2: Cooperative Transmission 104


6.3 Non-Orthogonal Multiple Access with User Selection 105


6.3.1 RNRF Selection Scheme 105


6.3.2 NNNF Selection Scheme 108


6.3.3 NNFF Selection Scheme 111


6.4 Numerical Results 112


6.4.1 Outage Probability of the Near Users 112


6.4.2 Outage Probability of the Far Users 115


6.4.3 Throughput in Delay-Sensitive Transmission Mode 116


6.5 Conclusions 117


Bibliography 118


7 Fairness-AwareWireless Powered Communications with Processing Cost 121
Zoran Hadzi-Velkov, Slavche Pejoski, and Nikola Zlatanov


7.1 Introduction 121


7.2 System Model 122


7.2.1 Energy Storage Strategies 124


7.2.2 Circuit Power Consumption 124


7.3 Proportionally Fair Resource Allocation 125


7.3.1 Short-term Energy Storage Strategy 125


7.3.2 Long-term Energy Storage Strategy 127


7.3.3 Practical Online Implementation 130


7.3.4 Numerical Results 131


7.4 Conclusion 133


7.5 Appendix 133


7.5.1 Proof of Theorem 7.2 133


Bibliography 136


8 Wireless Power Transfer in MillimeterWave 139
Talha Ahmed Khan and RobertW. Heath Jr.


8.1 Introduction 139


8.2 System Model 141


8.3 Analytical Results 143


8.4 Key Insights 147


8.5 Conclusions 151


8.6 Appendix 153


Bibliography 154


9 Wireless Information and Power Transfer in Relaying Systems 157
P. D. Diamantoulakis, K. N. Pappi, and G. K. Karagiannidis


9.1 Introduction 157


9.2 Wireless-Powered Cooperative Networks with a Single Source-Destination Pair 158


9.2.1 System Model and Outline 158


9.2.2 Wireless Energy Harvesting Relaying Protocols 159


9.2.3 Multiple Antennas at the Relay 161


9.2.4 Multiple Relays and Relay Selection Strategies 163


9.2.5 Power Allocation Strategies for Multiple Carriers 166


9.3 Wireless-Powered Cooperative Networks with Multiple Sources 168


9.3.1 System Model 168


9.3.2 Power Allocation Strategies 169


9.3.3 Multiple Relays and Relay Selection Strategies 173


9.3.4 Two-Way Relaying Networks 175


9.4 Future Research Challenges 176


9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments 176


9.4.2 NOMA-based Relaying 176


9.4.3 Large-Scale Networks 176


9.4.4 Cognitive Relaying 177


Bibliography 177


10 Harnessing Interference in SWIPT Systems 181
Stelios Timotheou, Gan Zheng, Christos Masouros, and Ioannis Krikidis


10.1 Introduction 181


10.2 System Model 183


10.3 Conventional Precoding Solution 184


10.4 Joint Precoding and Power Splitting with Constructive


Interference 185


10.4.1 Problem Formulation 186


10.4.2 Upper Bounding SOCP Algorithm 188


10.4.3 Successive Linear Approximation Algorithm 190


10.4.4 Lower Bounding SOCP Formulation 191


10.5 Simulation Results 192


10.6 Conclusions 194


Bibliography 194


11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits 197
Yuqing Su, DerrickWing Kwan Ng, and Robert Schober


11.1 Introduction 197


11.2 Channel Model 200


11.2.1 Energy Harvesting Model 201


11.2.2 Channel State Information Model 203


11.2.3 Secrecy Rate 204


11.3 Optimization Problem and Solution 204


11.4 Results 208


11.5 Conclusions 211


Appendix-Proof of Theorem 11.1 211


Bibliography 213


12 Wireless-Powered Cooperative Networks with Energy Accumulation 217
Yifan Gu, He Chen, and Yonghui Li


12.1 Introduction 217


12.2 System Model 219


12.3 Energy Accumulation of Relay Battery 222


12.3.1 Transition Matrix of the MC 222


12.3.2 Stationary Distribution of the Relay Battery 224


12.4 Throughput Analysis 224


12.5 Numerical Results 226


12.6 Conclusion 228


12.7 Appendix 229


Bibliography 231


13 Spectral and Energy-EfficientWireless-Powered IoT Networks 233
QingqingWu,Wen Chen, and Guangchi Zhang


13.1 Introduction 233


13.2 System Model and Problem Formulation 235


13.2.1 System Model 235


13.2.2 T-WPCN and Problem Formulation 236


13.2.3 N-WPCN and Problem Formulation 237


13.3 T-WPCN or N-WPCN? 237


13.3.1 Optimal Solution for T-WPCN 238


13.3.2 Optimal Solution for N-WPCN 239


13.3.3 TDMA versus NOMA 240


13.4 Numerical Results 243


13.4.1 SE versus PB Transmit Power 243


13.4.2 SE versus Device Circuit Power 245


13.5 Conclusions 245


13.6 FutureWork 247


Bibliography 247


14 Wireless-PoweredMobile Edge Computing Systems 253
FengWang, Jie Xu, XinWang, and Shuguang Cui


14.1 Introduction 253


14.2 System Model 256


14.3 Joint MEC-WPT Design 260


14.3.1 Problem Formulation 260


14.3.2 Optimal Solution 260


14.4 Numerical Results 266


14.5 Conclusion 268


Bibliography 268


15 Wireless Power Transfer: A Macroscopic Approach 273
Constantinos Psomas and Ioannis Krikidis


15.1 Wireless-Powered Cooperative Networks with Energy Storage 274


15.1.1 System Model 274


15.1.2 Relay Selection Schemes 276


15.1.3 Numerical Results 280


15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT 282


15.2.1 System Model 282


15.2.2 SWIPT with SIC 284


15.2.3 Numerical Results 285


15.3 AWireless-Powered Opportunistic Feedback Protocol 286


15.3.1 System Model 287


15.3.2 Wireless-Powered OBF Protocol 290


15.3.3 Beam Outage Probability 290


15.3.4 Numerical Results 292


15.4 Conclusion 293


Bibliography 294


Index 297

Polecamy również książki

Strony www Białystok Warszawa
801 777 223