ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Dynamics of Gas-Surface Interaction: Proceedings of the International School on Material Science and Technology, Erice, Italy, July 1-15, 1981

Dynamics of Gas-Surface Interaction: Proceedings of the International School on Material Science and Technology, Erice, Italy, July 1-15, 1981

Publisher Springer, Berlin
Year
Pages 284
Version paperback
Language English
ISBN 9783642864575
Categories Physical chemistry
Delivery to United States

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

In recent decades surface science has experienced a large growth in connection with the development of various experimental techniques which are able to characterize solid surfaces through the observation of the scattering of ions, electrons, photons or atoms. These methods of investigation, known under different labels such as LEED, AES, XPS, UPS, etc. have been extensively applied in describing the structure, morphology, and chemical and physical properties of crystal surfaces and interfaces of a large variety of materials of interest in solid-state physics, electronics, metallurgy, biophysics, and heterogeneous catalysis. Among these methods we wish to emphasize molecular beam scattering from solid surfaces. ~lolecular beam scattering has gone through a large development in the last ten years. In this decade a large number of laboratories have used this method to study various clean and adsorbate-covered surfaces. The technique is nonetheless quite old. It dates back to the beginning of the thirties, when Estermann and Stern performed the first atom diffraction experiment proving the wave nature of atoms. In the following years the entire subject of gas-surface interaction was considered a branch of rarefied gas dynamics and developed in connection with aerospace research. Attention was then given to the integral properties of gas-solid interactions (sticking and energy accomodation, mean momentum transfer) rather than to atom-surface scatter ing from well-characterized surfaces.

Dynamics of Gas-Surface Interaction: Proceedings of the International School on Material Science and Technology, Erice, Italy, July 1-15, 1981

Table of contents

I. Scattering of Atoms from SolidSurfaces.- Theory of Atom-Surface Scattering.- 1. Lecture I.- 1.1 Scatteringfrom a Periodic Potential.- 1.2 Numerical Methods and Phase Shifts.- 1.3 CloseCoupling Calculations.- 1.4 The Distorted Wave Born Approximation.- 2. LectureII.- 2.1 Formal Scattering Theory.- 2.2 Partial Processes.- 3. Lecture III.-3.1 Semiclassical Methods.- 3.2 Scattering from a Hard Corrugated Surface(HCS).- 3.3 Eikonal and Kirchoff Approximations.- 4. Lecture IV.- 4.1Introduction.- 4.2 Kinematics.- 4.3 Resonant Scattering Formalism.- 4.4Resonance Line Shapes.- References.- He Diffraction from SemiconductorSurfaces. Lecture I: Si(100).- 1. Introduction.- 2. Si (100): Disordered DimerArray.- 2.1 Si(100) Periodicity.- 2.2 Diffraction Scans and a QualitativeFeature of the Si(100) Surface.- 2.3 Specular Intensities.- 3. StructuralModels for Si(100).- References.- He Diffraction from Semiconductor Surfaces.Lecture II: CaAs(110): Calibration of the Atom-Diffraction Technique.- 1.Introduction.- 2. Diffracti on Scans.- 3. Specular Intensity Scans.- 4.Rigorous Calculation of Diffraction Intensities.- 5. The Origin of the He/GaAsPotential.- 6. Computation of Rarefied Charge Densities.- 7. Summary.-References.- He Diffraction from Semiconductor Surfaces. Lecture III: Si (111)7×7.- 1. Introduction.- 2. Diffraction Scans.- 3. Specular IntensityInterference.- 4. A Model of the Si(111) 7×7.- 5. Summary.- References.- HeliumScattering from Clean and Adsorbate-Covered Metal Surfaces.- 1. Introduction.-2. The He-Surface Interaction Potential and the Crystallographic InformationContained in the Corrugation Function.- 3. Data Analysis.- 3.1 Diffraction Geometry.-3.2 The Hard Corrugated Wall Model.- 3.3 Calculation of Intensities for Given?(R): The Direct Problem.- 3.4 Reconstruction of the Corrugation Function fromMeasured and Intensities: the Inverse Problem.- 3.5 Influences due to theSoftness of the Potential.- 3.6 Influences due to the Thermal Motion of theSurface Atoms.- 4. Experimental Aspects.- 5. Examples.- 5.1 Metals.- 5.2Adsorbate Structures.- References.- The Coherence Length in Molecular andElectron Beam Diffraction.- 1. Abstract.- 2. Introduction.- 3. The Formation ofthe Diffraction Pattern.- 3.1 The Simple-Minded Approach.- 3.2 The RigorousApproach.- 4. Summary.- References.- Charge Density Waves Surface DeformationStudied by Helium Atom Diffraction.- 1. Introduction.- 2. Unreconstructed Structureof the Layered Compounds.- 3. Charge Density Waves Deformations.- References.-II. Characterization of Adsorbed Phases.- Phase Transitions in Surface Films.-1. Introduction.- 2. Order-Disorder Transitions.- 2.1 Critical Exponents andSurface Symmetry.- 2.2 2D Gas-Solid Transition.- 2.3 2D Melting (Existence of aSelf-Bound Liquid?).- 2.3.1 Mehtane/Graphite.- 2.3.2 Krypton/Graphite.- 3.Solid-State Transformation.- 3.1 Commensurate-Incommensurate (C-I) Transition.-3.1.1 Kr/Graphite (0001).- 3.1.2 Xe/Cu(110).- 3.2 2D Polymorphism.- 3.3 NonStoichiometric Surface Compounds.- 4. 2D Gas-Liquid Transition.- 4.1 Liquid-GasCoexistence.- 4.2 Critical Index.- 5. Influence of Heterogeneities on SurfacePhase Transitions.- 6. Conclusions.- References.- Universal Laws of PhysicalAdsorption.- 1. Introduction.- 2. Evidence for Universality.- 3. AnalyticalForms of the Potential.- 4. Conclusion.- References.- The Dynamical Parametersof Desorbing Molecules.- 1. Abstract.- 2. Introduction.- 3. The Failure of the GeneralDesorption Laws.- 4. The Associative Desorption of Permeating Atoms.- 5.Conclusions.- References.- Atomic Beam Diffraction as a Method for StudyingTwo-Dimensional Solids.- 1. Introduction.- 2. Atomic Diffraction.- 2.1 SurfaceCrystallography.- 2.2 Atom-Surface Interaction Potential.- 2.3 InelasticScattering.- 3. Atomic Diffraction from Adsorbates.- 4. Diffraction of H Atomsfrom a Xe Overlayer Adsorbed on the (0001) Surface of Graphite.- 5.Conclusions.- References.- Atom Scattering from Overlayers.- 1. Introduction.-2. Experiments of Atom Scattering from Adsorbates.- 3. Theory of Atom Scattering from Adsorbates.- 4. Inelastic Scattering.- References.- III. Spectroscopyof Surface Optical Excitations.- Surface Elementary Excitations.- 1. Introduction.-2. Electrons at Metal Surfaces.- 3. Continuum Models of Bulk and SurfaceElementary Excitatations.- 3.1 Radiative and Non-Radiative Modes.- 3.2 TheDispersion Relations.- 3.3 Matching Conditions in the Non-Retarded Limit.- 3.4Surface Modes in a Crystal Slab.- 3.5 Quantization and the HamiltonianFormalism.- 4. Microscopic Theory of Surface Electronic Excitations.- 4.1Surface Plasmon Dispersion.- 4.2 Semiclassical Infinite Barrier Model (SCIBM).-5. Optical Spectroscopy of Surface Excitations.- 5.1 Rough Surface andGratings.- 5.2 Attenuated Total Reflection (ATR).- 6. Electron Energy LossSpectroscopy of Surface Excitations.- 6.1 Introduction.- 6.2 ExperimentalExamples.- 6.3 Interaction of Electrons with Collective Surface Modes.- 6.4Interaction of Electrons with Localized Vibrations.- 6.5 Solution of theScattering Problem.- 6.6 Observation of Surface Optical Phonons and SurfacePhonons.- 6.7 Observation of Adsorbed Molecule Vibrational Modes.- 7. DynamicalScreening-Image Potential.- References.- Surface-Enhanced Raman Scattering.- 1.Introduction.- 2. The Phenomenon of Surface Enhanced Raman Scattering,"Roughness" and Local Field Effects.- 3. Further Reading.- References.-Calculation of the Phonon Spectrum of the Ni(111) Surface Covered with Oxygen.-1. Introduction.- 2. Dipole Coupling.- 3. Bulk Phonons.- 4. Surface Phonons.-5. Interpretation of the EELS Experiment.- References.- IV. Surface PhononSpectroscopy by Atom Scattering.- Phonon Interactions in Atom Scattering fromSurfaces.- 1. Introduction.- 2. Review of Theoretical Studies of SurfacePhonons.- 3. Kinematics of Inelastic Surface Scattering.- 4. Dynamical Theoryof Inelastic Scattering.- 5. Inelastic Scattering Experiments.- 6. Role ofResonances in Phonon Interactions.- References.- Surface Phonons in IonicCrystals.- 1. Introduction.- 2. Surface Elastic Waves.- 2.1 Theory.- 2.2Isotropic Crystals.- 2.3 Anisotropic Cubic Crystals.- 3. Surface Polaritons.-3.1 Introduction.- 3.2 Surface Phonon Polaritons.- 4. Surface Lattice Dynamics.-4.1 Introduction.- 4.2 Dynamics of a Thin Slab.- 4.3 The Green's FunctionMethod.- 4.3.1 The Free Surfaces as a Perturbation.- 4.3.2 The Semi-InfiniteLattice.- 4.4 Examples and Comparison with Experimental Data.- 4.4.1 TheEnergy-Loss Profile of Inelastic Atom Scattering.- References.- InelasticScattering of Neon from the (001) LiF Surface.- 1. Introduction.- 1.1Experimental Apparatus.- 1.2 Measurements and Analysis.- 1.3 MultiphononScattering.- 1.4 Conclusion.- References.- Inelastic Scattering from MetalSurfaces.- 1. What is so Exciting About Metal Surfaces.- 2. Basic DifferencesBetween Metal and Insulator Surfaces.- 3. Experimental Results.- 3.1 LightProbing Atoms: He on Cu.- 3.2 Heavy Probing Atoms: Ne on Ni.- 3.3 AdsorbateLayers.- 4. Conclusion.- References.- Bound State Resonance in the InelasticScattering of He-Graphite.- 1. Introduction.- 2. Experimental Observations.-2.1 Phonon-Assisted Bound State Resonance.- 2.2 Specular Phonon Assisted BoundState Resonance.- 2.3 Double Bound State Resonance.- 3. Calculation of theSpecular Phonon Assisted Resonance.- 4. Information on Surface PhononDispersion Relation.- 5. Conclusions.- References.- Index of Contributors.

We also recommend books

Strony www Białystok Warszawa
801 777 223